

Contrasting phonetic effects of morphological boundaries for vowel and consonant suffixes

Motoki Saito

13th International Seminar on Speech Production (ISSP2024)Autrans, France16.05.2024

- Phonetic reduction:
 - Unclearer speech
 - Shorter duration
 - More centralized formant/tongue positions

- Phonetic reduction:
 - Unclearer speech
 - Shorter duration
 - More centralized formant/tongue positions
- Phonetic enhancement:
 - Clearer speech
 - Longer duration
 - More peripheral formant/tongue positions

Phonetic enhancement effects of morphology

Longer affix duration (vs. pseudo-affix) [11, 17].

- Longer affix duration (vs. pseudo-affix) [11, 17].
- ► Longer duration for more clearly segmentable affixes [3, 7, 8].

- Longer affix duration (vs. pseudo-affix) [11, 17].
- ► Longer duration for more clearly segmentable affixes [3, 7, 8].
- ► More peripheral vowel realizations for affixes (vs. pseudo-affixes) [12].

- Longer affix duration (vs. pseudo-affix) [11, 17].
- Longer duration for more clearly segmentable affixes [3, 7, 8].
- More peripheral vowel realizations for affixes (vs. pseudo-affixes) [12].

 \Downarrow

Phonetic enhancement effects of morphological boundaries on affixes.

Shorter affix duration (vs. pseudo-affix) [9, 10, 13, 19].

Shorter affix duration (vs. pseudo-affix) [9, 10, 13, 19].

Phonetic reduction effects of morphological boundaries on affixes

 \Downarrow

Research question

Why are the opposite effects observed?

e.g., dis+tasteful vs. distorted [12]

e.g., dis+tasteful vs. distorted [12]

e.g., *mis+timing* vs. *mysterious* [12]

- e.g., dis+tasteful vs. distorted [12]
- e.g., mis+timing vs. mysterious [12]
 - ▶ No morphological effect on /d/ and /m/.

- e.g., dis+tasteful vs. distorted [12]
- e.g., mis+timing vs. mysterious [12]
 - ▶ No morphological effect on /d/ and /m/.
 - Enhancement effects of morphology on the vowel /ı/.

- e.g., dis+tasteful vs. distorted [12]
- e.g., mis+timing vs. mysterious [12]
 - ▶ No morphological effect on /d/ and /m/.
 - Enhancement effects of morphology on the vowel /ı/.
 - Reduction effects of morphology on /s/.

- e.g., dis+tasteful vs. distorted [12]
- e.g., mis+timing vs. mysterious [12]
 - ► No morphological effect on /d/ and /m/.
 - Enhancement effects of morphology on the vowel /ı/.
 - Reduction effects of morphology on /s/.

⇒ Enhancement effects of a morphological boundary are limited to vowels?

Enhancement effects

- ► UN- [7, 8].
- ► dis- [8].
- ▶ /n/ of *un-/in-* [3].
- ▶ /s/ of *-s* [11, 17].
- ▶ /I/ of *mis-/dis* [12].

Enhancement effects

- ▶ UN- [7, 8].
- ► dis- [8].
- ▶ /n/ of *un-/in-* [3].
- ▶ /s/ of *-s* [11, 17].
- ▶ /I/ of *mis-/dis* [12].

Reduction effects

- ► /s/ of -s [9, 19].
- ► /S/ Of -S [13] (for 2-year-old children).
- /s/ of mis-/dis- [12].

Enhancement effects

- ► UN- [7, 8].
- ▶ *dis-* [8].
- ▶ /n/ of *un-/in-* [3].
- ▶ /s/ of *-s* [11, 17].
- ▶ /I/ of *mis-/dis* [12].
- Reduction effects
 - ▶ /s/ of *-s* [9, 19].
 - \blacktriangleright /S/ Of -S [13] (for 2-year-old children).
 - /s/ of mis-/dis- [12].

Null effects

- ► /z/ of -s [9].
- ► /S/ Of -S [13] (for adults).
- ▶ *in-* [8].
- ► -*ly* [8].
- ▶ /t/ of *-ed* [11].
- ▶ /m/ of *mis* [12].
- /d/ of mis- [12].

Stems and rhymes always contain a vowel (in English).

- Stems and rhymes always contain a vowel (in English).
- Enhancement effects on stems/rhymes
 - ▶ [11, 14–16]**.**

- Stems and rhymes always contain a vowel (in English).
- Enhancement effects on stems/rhymes
 - ► [11, 14–16]**.**
- Null effects
 - ▶ [11, 15]**.**

- Stems and rhymes always contain a vowel (in English).
- Enhancement effects on stems/rhymes
 - ► [11, 14–16]**.**
- Null effects
 - ▶ [11, 15]**.**
- Reduction effects on stems/rhymes
 - None

Hypothesis

Hypothesis

Vowels are subject to enhancement, while consonants are not.

Hypothesis

Vowels are subject to enhancement, while consonants are not.

 \Rightarrow Segments with higher sonority are enhanced, while those with lower sonority are not.

► German affixes *-er* [v] and *-t* [t].

► German affixes *-er* [v] and *-t* [t].

Both are affixes made of a single segment.

- ► German affixes *-er* [v] and *-t* [t].
 - Both are affixes made of a single segment.
 - [v] (a low open vowel) is at the highest end of the sonority hierarchy.

- ► German affixes *-er* [v] and *-t* [t].
 - Both are affixes made of a single segment.
 - [v] (a low open vowel) is at the highest end of the sonority hierarchy.
 - ▶ [t] (a voiceless plosive) is at the lowest end of the sonority hierarchy.

► *-er* [ɐ]

The suffix -er

🕨 *-er* [ɐ]

- ► An inflectional suffix for the plural.
 - e.g., *Kind+er* [kınd+e] "children".

The suffix -er

► *-er* [ɐ]

• An inflectional suffix for the plural.

e.g., *Kind+er* [kınd+e] "children".

An inflectional suffix for the comparative.

e.g., *schön+er* [ʃøn+ɐ] "nicer/more beautiful".

The suffix -er

► *-er* [ɐ]

• An inflectional suffix for the plural.

e.g., *Kind+er* [kınd+e] "children".

An inflectional suffix for the comparative.
e.g., schön+er [[øn+e] "nicer/more beautiful".

A derivational suffix for the agent.
e.g., Arbeit+er [aubait+e] "worker".

► *-t* [t]

► *-t* [t]

- ► An inflectional suffix for the present 3rd-person singular.
 - e.g., sie spiel+t [zi: pi:l+t] "she plays".

► *-t* [t]

An inflectional suffix for the present 3rd-person singular.

e.g., sie spiel+t [zit fit+t] "she plays".

An inflectional suffix for the present 2nd-person plural.

e.g., *ihr spiel+t* [re ∫piːl+t] "you (pl.) play".

► *-t* [t]

An inflectional suffix for the present 3rd-person singular.

e.g., sie spiel+t [zit pit+t] "she plays".

An inflectional suffix for the present 2nd-person plural.
e.g., *ihr spiel+t* [re fpi:l+t] "you (pl.) play".

An inflectional suffix for the past-participle.

e.g., ge+spiel+t [gə+fpitl+t] "played".

All the words that contain word-final [v] or [t] from the Karl Eberhards Corpus of spontaneously spoken southern German (KEC) [1].

- All the words that contain word-final [v] or [t] from the Karl Eberhards Corpus of spontaneously spoken southern German (KEC) [1].
- ► KEC (Audio)
 - 39 speakers
 - Dialogues between two speakers.
 - About 35 hours of audio recordings.

- All the words that contain word-final [v] or [t] from the Karl Eberhards Corpus of spontaneously spoken southern German (KEC) [1].
- ► KEC (Audio)
 - 39 speakers
 - Dialogues between two speakers.
 - About 35 hours of audio recordings.
- ► KEC (Articulography)
 - 13 speakers
 - Dialogues between two speakers.
 - About 2 hours of articulography (EMA) data.

- Segment/affix duration
 - Calculated from time stamps available in KEC.

- ► Segment/affix duration
 - Calculated from time stamps available in KEC.
- Tongue tip position
 - Collected from the Articulography section of KEC.

- Segment/affix duration
 - Calculated from time stamps available in KEC.
- Tongue tip position
 - Collected from the Articulography section of KEC.
- Morphological status of the target affixes was determined with the CELEX database [2].
 - **e.g.**, *Arbeiter*: ((arbeit)[V], (er)[N|V.])[N]
 - e.g., Kinder: No entry in the lemma section + (Kind) [N] + S1/P4
 - e.g., macht: No entry in the lemma section + 3SIE, 2PIE, rP

Acoustic analysis

- Acoustic analysis
- Articulatory analysis

Acoustic analysis

Articulatory analysis

- ► Suffix duration (SuffixDur).
 - ► Log-transformed.

Acoustic analysis: Predictors of the main interest

► Suffix identity (Suffix).

- ► Suffix identity (Suffix).
 - ► -er vs. -t.

- ► Suffix identity (Suffix).
 - ► -er vs. -t.
- ► Morphological status (Morph).

- ► Suffix identity (Suffix).
 - ► -er vs. -t.
- ► Morphological status (Morph).
 - Pseudo-suffix vs. Suffix

- ► Suffix identity (Suffix).
 - ► -er vs. -t.
- Morphological status (Morph).
 - Pseudo-suffix vs. Suffix
 - e.g., Vater vs. Kind+er.

► Utterance-initial (UttInitial).

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- ► The number of syllables in each word (NumSylWord).

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- The number of syllables in each word (NumSylWord).
- ► The number of syllables in each uttterance (NumSylUtt).
 - * An utterance was defined as a stretch of an utterance bound by pauses.

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- The number of syllables in each word (NumSylWord).
- ► The number of syllables in each uttterance (NumSylUtt).
 - * An utterance was defined as a stretch of an utterance bound by pauses.
- ▶ Word duration (WordDur).

- ▶ Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- The number of syllables in each word (NumSylWord).
- ► The number of syllables in each uttterance (NumSylUtt).
 - An utterance was defined as a stretch of an utterance bound by pauses.
- ▶ Word duration (WordDur).
- ▶ Utterance duration (UttDur).

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- ► The number of syllables in each word (NumSylWord).
- ► The number of syllables in each uttlerance (NumSylUtt).
 - * An utterance was defined as a stretch of an utterance bound by pauses.
- ► Word duration (WordDur).
- ► Utterance duration (UttDur).

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- ► The number of syllables in each word (NumSylWord).
- ► The number of syllables in each uttlerance (NumSylUtt).
 - * An utterance was defined as a stretch of an utterance bound by pauses.
- ► Word duration (WordDur).
- ► Utterance duration (UttDur).

PC1

- Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- ► The number of syllables in each word (NumSylWord).
- ► The number of syllables in each uttlerance (NumSylUtt).
 - * An utterance was defined as a stretch of an utterance bound by pauses.
- ► Word duration (WordDur).
- ► Utterance duration (UttDur).
- ► PC1
 - About 99% of the variance by NumSylWord, NumSylUtt, WordDur, and UttDur was explained.

- ► Word frequency (WordFreq).
 - Collected from the SdeWaC corpus [5].
 - Log-transformed.

- ► Word frequency (WordFreq).
 - Collected from the SdeWaC corpus [5].
 - Log-transformed.
- **Speaker identity** (Speaker).
 - As an random effect.

► SuffixDur ~ Suffix + Morph + Suffix:Morph

SuffixDur ~ Suffix + Morph + Suffix:Morph + UttInitial + UttFinal + s(PC1, k=3)

- SuffixDur ~ Suffix + Morph + Suffix:Morph
 - + UttInitial + UttFinal + s(PC1, k=3)
 - + s(WordFreq, k=3) + s(Speaker, bs='re')

(A. Parametric)	eta	SE	t	p
Intercept	-2.32	0.01	-295.12	<0.01
Suffix=-t	-0.45	0.00	-126.09	< 0.01
Morph=TRUE	0.06	0.01	7.74	< 0.01
UttInitial=TRUE	0.02	0.00	4.26	< 0.01
UttFinal=TRUE	0.39	0.00	107.32	< 0.01
Suffix=- <i>t</i> :Morph=TRUE	-0.06	0.01	-7.36	<0.01
(B. Smooth)	edf	Ref.df	F	p
s(WordFreq)	1.95	2.00	177.71	<0.01
s(PC1)	1.98	2.00	51.22	<0.01
s(Speaker)	354.23	466.00	3.41	< 0.01

(A. Parametric)	eta	SE	t	p
Intercept	-2.32	0.01	-295.12	<0.01
Suffix=- <i>t</i>	-0.45	0.00	-126.09	< 0.01
Morph=TRUE	0.06	0.01	7.74	<0.01
UttInitial=TRUE	0.02	0.00	4.26	< 0.01
UttFinal=TRUE	0.39	0.00	107.32	<0.01
Suffix=- <i>t</i> :Morph=TRUE	-0.06	0.01	-7.36	<0.01
(B. Smooth)	edf	Ref.df	F	p
s(WordFreq)	1.95	2.00	177.71	<0.01
s(PC1)	1.98	2.00	51.22	< 0.01
s(Speaker)	354.23	466.00	3.41	< 0.01

(A. Parametric)	eta	SE	t	p
Intercept	-2.32	0.01	-295.12	<0.01
Suffix=-t	-0.45	0.00	-126.09	< 0.01
Morph=TRUE	0.06	0.01	7.74	<0.01
UttInitial=TRUE	0.02	0.00	4.26	< 0.01
UttFinal=TRUE	0.39	0.00	107.32	< 0.01
Suffix=- <i>t</i> :Morph=TRUE	-0.06	0.01	-7.36	<0.01
(B. Smooth)	edf	Ref.df	F	p
s(WordFreq)	1.95	2.00	177.71	<0.01
s(PC1)	1.98	2.00	51.22	< 0.01
s(Speaker)	354.23	466.00	3.41	< 0.01

Suffixal -er is longer than non-suffixal -er.

(A. Parametric)	eta	SE	t	p
Intercept	-2.32	0.01	-295.12	<0.01
Suffix=- <i>t</i>	-0.45	0.00	-126.09	< 0.01
Morph=TRUE	0.06	0.01	7.74	<0.01
UttInitial=TRUE	0.02	0.00	4.26	< 0.01
UttFinal=TRUE	0.39	0.00	107.32	< 0.01
Suffix=-t:Morph=TRUE	-0.06	0.01	-7.36	<0.01
(B. Smooth)	edf	Ref.df	F	p
s(WordFreq)	1.95	2.00	177.71	<0.01
s(PC1)	1.98	2.00	51.22	< 0.01
s(Speaker)	354.23	466.00	3.41	< 0.01

Suffixal -er is longer than non-suffixal -er.

```
▶ β = 0.06, p < 0.01.
```


(A. Parametric)	eta	SE	t	p
Intercept	-2.32	0.01	-295.12	<0.01
Suffix=- <i>t</i>	-0.45	0.00	-126.09	<0.01
Morph=TRUE	0.06	0.01	7.74	<0.01
UttInitial=TRUE	0.02	0.00	4.26	< 0.01
UttFinal=TRUE	0.39	0.00	107.32	< 0.01
Suffix=-t:Morph=TRUE	-0.06	0.01	-7.36	<0.01
(B. Smooth)	edf	Ref.df	F	p
s(WordFreq)	1.95	2.00	177.71	<0.01
s(PC1)	1.98	2.00	51.22	< 0.01
s(Speaker)	354.23	466.00	3.41	< 0.01

- Suffixal -er is longer than non-suffixal -er.
 - β = 0.06, ρ < 0.01.
 </p>
- Effects of Morph are significantly smaller for -t.

β = −0.06, ρ < 0.01.
</p>

Acoustic analysis: Estimated effects of Morph and Suffix

EBERHARD KARLS

UNIVERSITÄT TÜBINGEN

Acoustic analysis: Estimated effects of Morph and Suffix

Enhancement for *-er*.

EBERHARD KARLS

UNIVERSITÄ TUBINGEN

Acoustic analysis: Estimated effects of Morph and Suffix

- Enhancement for *-er*.
- ▶ No effect for -t.

EBERHARD KARLS

TÜBINGEN

- Acoustic analysis
- Articulatory analysis

- Acoustic analysis
- Articulatory analysis

Acoustic analysis

Articulatory analysis

- ► -er
- ► -t

- Acoustic analysis
- Articulatory analysis
 - ► -er
 - ► -t

Vertical tongue tip positions (TTpos).

- ► Suffix identity (Suffix).
 - ► -er-vs.-t.
- Morphological status (Morph).
 - Pseudo-suffix vs. Suffix
 - e.g., Vater vs. Kind+er.

- ► Suffix identity (Suffix).
 - ► -er-vs.-t.
- Morphological status (Morph).
 - Pseudo-suffix vs. Suffix
 - e.g., Vater vs. Kind+er.
- ► **Time** (Time)
 - Normalized between 0 and 1.
 - $0 \rightarrow \text{Onset of the target segment/suffix.}$
 - 1 \rightarrow Offset of the target segment/suffix.

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- ► PC1
 - ► A combined measure for NumSylWord, NumSylUtt, WordDur, and UttDur.

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).

PC1

- ► A combined measure for NumSylWord, NumSylUtt, WordDur, and UttDur.
- Previous segment (PrevSeg)
 - As an random effect.

- ► Utterance-initial (UttInitial).
- ► Utterance-final (UttFinal).
- PC1
 - ► A combined measure for NumSylWord, NumSylUtt, WordDur, and UttDur.
- Previous segment (PrevSeg)
 - As an random effect.
- Next segment (NextSeg)
 - As an random effect.

- ► Word frequency (WordFreq).
 - Collected from the SdeWaC corpus [5].
 - Log-transformed.
- **Speaker identity** (Speaker).
 - As an random effect.

- ► Word frequency (WordFreq).
 - Collected from the SdeWaC corpus [5].
 - Log-transformed.
- **Speaker identity** (Speaker).
 - As an random effect.
- Duration of the target segment/suffix (SuffixDur)
 - Log-transformed.

▶ TTpos \sim s(Time, k=3) + s(Time, by=Morph, k=3) + Morph

TTpos ~ s(Time, k=3) + s(Time, by=Morph, k=3) + Morph
+ UttInitial + UttFinal + s(PC1, k=3)

- ▶ s(Time, k=3)
 - \rightarrow Tongue contour for non-morphemic *-er* (e.g., *Vater*).


```
TTpos ~ s(Time, k=3) + s(Time, by=Morph, k=3) + Morph
+ UttInitial + UttFinal + s(PC1, k=3)
+ s(WordFreq, k=3) + s(Speaker, bs='re')
+ s(PrevSeg, bs='re') + s(NextSeg, bs='re')
```

▶ s(Time, k=3)

 \rightarrow Tongue contour for non-morphemic *-er* (e.g., *Vater*).

▶ s(Time, by=Morph, k=3)

 \rightarrow Difference between tongue contours between non-morphemic and morphemic *-er*.

- TTpos ~ s(Time, k=3) + s(Time, by=Morph, k=3) + Morph + UttInitial + UttFinal + s(PC1, k=3) + s(WordFreq, k=3) + s(Speaker, bs='re') + s(PrevSeg, bs='re') + s(NextSeg, bs='re')
- ▶ s(Time, k=3)

 \rightarrow Tongue contour for non-morphemic *-er* (e.g., *Vater*).

▶ s(Time, by=Morph, k=3)

 \rightarrow Difference between tongue contours between non-morphemic and morphemic *-er*.

- ▶ Morph
 - \rightarrow Overall (average) differences in tongue height between non-morphemic and morphemic *-er*, irrespective of time.

(A. Parametric)	β	SE	t	р
Intercept	4.19	0.929	4.507	<0.01
Morph=TRUE	-0.59	0.160	-3.702	<0.01
UttInitial=TRUE	-0.02	0.115	-0.213	0.83
UttFinal=TRUE	-0.89	0.957	-0.928	0.35

(A. Parametric)	β	SE	t	р
Intercept	4.19	0.929	4.507	<0.01
Morph=TRUE	-0.59	0.160	-3.702	<0.01
UttInitial=TRUE	-0.02	0.115	-0.213	0.83
UttFinal=TRUE	-0.89	0.957	-0.928	0.35

(A. Parametric)	eta	SE	t	р
Intercept	4.19	0.929	4.507	<0.01
Morph=TRUE	-0.59	0.160	-3.702	<0.01
UttInitial=TRUE	-0.02	0.115	-0.213	0.83
UttFinal=TRUE	-0.89	0.957	-0.928	0.35

 Suffixal -er has overall lower tongue positions than non-suffixal -er.

(A. Parametric)	eta	SE	t	р
Intercept	4.19	0.929	4.507	<0.01
Morph=TRUE	-0.59	0.160	-3.702	<0.01
UttInitial=TRUE	-0.02	0.115	-0.213	0.83
UttFinal=TRUE	-0.89	0.957	-0.928	0.35

- Suffixal -er has overall lower tongue positions than non-suffixal -er.
 - * -er [e] is a low vowel.
 - i.e., Lower positions \approx clearer [<code>p</code>].

EBERHARD KARLS	<i>B</i> B
LINIVERSITÄT	
UNIVERSITAT	
TUBINGEN	23
I O DII (OLI (

(B. Smooth)	edf	Ref.df	F	р
s(Time)	2.00	2.00	150.07	<0.01
s(Time):Morph=TRUE	1.99	2.00	37.99	< 0.01
s(WordFreq)	1.00	1.00	2.55	0.11
s(PC1)	1.68	1.90	1.03	0.36
s(PrevSeg)	20.14	23.00	714.94	0.57
s(NextSeg)	49.76	58.00	520.66	0.18
s(Speaker)	31.91	33.00	1620.28	0.04

EBERHARD KARLS	<i>B</i> B
LINUVERSITÄT	
TUBINGEN	25
r o bir (Obri	

(B. Smooth)	edf	Ref.df	F	р
s(Time)	2.00	2.00	150.07	<0.01
s(Time):Morph=TRUE	1.99	2.00	37.99	< 0.01
s(WordFreq)	1.00	1.00	2.55	0.11
s(PC1)	1.68	1.90	1.03	0.36
s(PrevSeg)	20.14	23.00	714.94	0.57
s(NextSeg)	49.76	58.00	520.66	0.18
s(Speaker)	31.91	33.00	1620.28	0.04

(B. Smooth)	edf	Ref.df	F	р
s(Time)	2.00	2.00	150.07	<0.01
s(Time):Morph=TRUE	1.99	2.00	37.99	< 0.01
s(WordFreq)	1.00	1.00	2.55	0.11
s(PC1)	1.68	1.90	1.03	0.36
s(PrevSeg)	20.14	23.00	714.94	0.57
s(NextSeg)	49.76	58.00	520.66	0.18
s(Speaker)	31.91	33.00	1620.28	0.04

Tongue trajectories of Non-suffixal -er are significantly different than a flat straight line.

(B. Smooth)	edf	Ref.df	F	р
s(Time)	2.00	2.00	150.07	<0.01
s(Time):Morph=TRUE	1.99	2.00	37.99	<0.01
s(WordFreq)	1.00	1.00	2.55	0.11
s(PC1)	1.68	1.90	1.03	0.36
s(PrevSeg)	20.14	23.00	714.94	0.57
s(NextSeg)	49.76	58.00	520.66	0.18
s(Speaker)	31.91	33.00	1620.28	0.04

Tongue trajectories of Non-suffixal -er are significantly different than a flat straight line.

(B. Smooth)	edf	Ref.df	F	p
s(Time)	2.00	2.00	150.07	<0.01
s(Time):Morph=TRUE	1.99	2.00	37.99	<0.01
s(WordFreq)	1.00	1.00	2.55	0.11
s(PC1)	1.68	1.90	1.03	0.36
s(PrevSeg)	20.14	23.00	714.94	0.57
s(NextSeg)	49.76	58.00	520.66	0.18
s(Speaker)	31.91	33.00	1620.28	0.04

Tongue trajectories of Non-suffixal -er are significantly different than a flat straight line.

Shape of tongue trajectories are significantly different between suffixal -er and non-suffixal -er.

- ► *y* = 0
 - → No difference in tongue positions between suffixal and non-suffixal -er at the point in time.

► *y* = 0

→ No difference in tongue positions between suffixal and non-suffixal -er at the point in time.

EBERHARD KARLS

UBINC

No effect of morphology at the onset and offset of *-er*.

► *y* = 0

 \rightarrow No difference in tongue positions between suffixal and non-suffixal *-er* at the point in time.

EBERHARD KARLS

RING

- No effect of morphology at the onset and offset of *-er*.
- Suffixal -er has lower tongue positions at the middle of -er.

► *y* = 0

 \rightarrow No difference in tongue positions between suffixal and non-suffixal *-er* at the point in time.

EBERHARD KARLS

- No effect of morphology at the onset and offset of -er.
- Suffixal -er has lower tongue positions at the middle of -er.
- Clearer realization / Enhancement for suffixal -er.

Acoustic analysis

Articulatory analysis

- ► -er
- ► -t

Acoustic analysis

Articulatory analysis

- ► -er
- ► -t

(A. Parametric)	β	SE	t	р
Intercept	8.27	0.89	9.29	<0.01
Morph=TRUE	0.01	0.05	0.11	0.91
UttInitial=TRUE	0.09	0.06	1.50	0.13
UttFinal=TRUE	-0.12	0.67	-0.19	0.85

(A. Parametric)	β	SE	t	р
Intercept	8.27	0.89	9.29	<0.01
Morph=TRUE	0.01	0.05	0.11	0.91
UttInitial=TRUE	0.09	0.06	1.50	0.13
UttFinal=TRUE	-0.12	0.67	-0.19	0.85

(A. Parametric)	eta	SE	t	р
Intercept	8.27	0.89	9.29	<0.01
Morph=TRUE	0.01	0.05	0.11	0.91
UttInitial=TRUE	0.09	0.06	1.50	0.13
UttFinal=TRUE	-0.12	0.67	-0.19	0.85

No mean differences in tongue positions between suffixal and non-suffixal -t.

(B. Smooth)	edf	Ref.df	F	р
s(Time)	2.00	2.00	354.71	<0.01
s(Time):Morph=TRUE	1.35	1.58	0.48	0.45
s(WordFreq)	1.99	2.00	35.91	< 0.01
s(PC1)	1.98	2.00	21.89	< 0.01
s(PrevSeg)	21.32	27.00	1197.37	< 0.01
s(NextSeg)	81.96	102.00	135.11	< 0.01
s(Speaker)	32.96	34.00	3428.02	< 0.01

(B. Smooth)	edf	Ref.df	F	р
s(Time)	2.00	2.00	354.71	<0.01
s(Time):Morph=TRUE	1.35	1.58	0.48	0.45
s(WordFreq)	1.99	2.00	35.91	<0.01
s(PC1)	1.98	2.00	21.89	< 0.01
s(PrevSeg)	21.32	27.00	1197.37	< 0.01
s(NextSeg)	81.96	102.00	135.11	< 0.01
s(Speaker)	32.96	34.00	3428.02	< 0.01

(B. Smooth)	edf	Ref.df	F	p	
s(Time)	2.00	2.00	354.71	<0.01	
s(Time):Morph=TRUE	1.35	1.58	0.48	0.45	
s(WordFreq)	1.99	2.00	35.91	< 0.01	
s(PC1)	1.98	2.00	21.89	< 0.01	
s(PrevSeg)	21.32	27.00	1197.37	< 0.01	
s(NextSeg)	81.96	102.00	135.11	< 0.01	
s(Speaker)	32.96	34.00	3428.02	< 0.01	

Tongue trajectories for non-suffixal -t are significantly different from a flat straight line.

(B. Smooth)	edf	Ref.df	F	р	_	
s(Time) s(Time):Morph=TRUE	2.00 1.35	2.00 1.58	354.71 0.48	<0.01 0.45	•	Tongue trajectories for non-suffixal -t are significantly
s(WordFreq)	1.99	2.00	35.91	< 0.01		different from a flat straight line.
s(PC1)	1.98	2.00	21.89	< 0.01		
s(PrevSeg)	21.32	27.00	1197.37	< 0.01		
s(NextSeg)	81.96	102.00	135.11	< 0.01		
s(Speaker)	32.96	34.00	3428.02	< 0.01		

(B. Smooth)	edf	Ref.df	F	р	
s(Time)	2.00	2.00	354.71	<0.01	
s(Time):Morph=TRUE	1.35	1.58	0.48	0.45	
s(WordFreq)	1.99	2.00	35.91	< 0.01	
s(PC1)	1.98	2.00	21.89	< 0.01	
s(PrevSeg)	21.32	27.00	1197.37	< 0.01	
s(NextSeg)	81.96	102.00	135.11	<0.01	
s(Speaker)	32.96	34.00	3428.02	<0.01	

Tongue trajectories for non-suffixal *-t* are significantly different from a flat straight line.

 There is no difference in tongue trajectories between suffixal and non-suffixal -t.

Confidence intervals containing y = 0 → No difference between suffixal and non-suffixal -t.

- Confidence intervals containing y = 0
 No difference between suffixal and non-suffixal -t.
- No morphological effects for *-t*.

EBERHARD KARLS

FIRINI

- ► Suffixal -er:
 - Longer duration

- Longer duration
- Clearer articulation

- ► Suffixal -er:
 - Longer duration
 - Clearer articulation
- ► Suffixal -t:

- Longer duration
- Clearer articulation
- ► Suffixal -t:
 - ► No difference in duration

- Longer duration
- Clearer articulation
- Suffixal -t:
 - No difference in duration
 - No difference in articulation

Morphological effects on phonetic realizations are modulated by types of segments.

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

l -er

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?
- ► -er
 - \rightarrow Higher sonority

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?
- ► -er
 - \rightarrow Higher sonority
 - \rightarrow Greater phonetic power [6]

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

► -er

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]
- \rightarrow Enhancing *-er* pays off.

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]
- \rightarrow Enhancing *-er* pays off.

► -t

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]
- \rightarrow Enhancing *-er* pays off.

► -t

 \rightarrow Lower sonority

- Morphological effects on phonetic realizations are modulated by types of segments.
- ▶ Why enhancement for *-er* and no effect for *-t*?

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]
- \rightarrow Enhancing *-er* pays off.

► -t

- \rightarrow Lower sonority
- \rightarrow Less phonetic power [6]

- Morphological effects on phonetic realizations are modulated by types of segments.
- Why enhancement for -er and no effect for -t?

-er

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]
- \rightarrow Enhancing *-er* pays off.
- ► -t
 - \rightarrow Lower sonority
 - \rightarrow Less phonetic power [6]
 - \rightarrow Lower perceptibility [4]

- Morphological effects on phonetic realizations are modulated by types of segments.
- Why enhancement for -er and no effect for -t?

-er

- \rightarrow Higher sonority
- \rightarrow Greater phonetic power [6]
- \rightarrow Better perceptibility [4]
- \rightarrow Enhancing *-er* pays off.
- ► -t
 - \rightarrow Lower sonority
 - \rightarrow Less phonetic power [6]
 - \rightarrow Lower perceptibility [4]
 - \rightarrow Enhancing -t does not contribute to "clearer speech" so much as -er.

- ► Only *-t* and *-er* were investigated.
 - In order to generalize the current findings to sonority, more different segments/affixes should be included.

Thanks for listening!

- [1] Arnold, D., & Tomaschek, F. (2016). The Karl Eberhards Corpus of spontaneously spoken southern German in dialogues audio and articulatory recordings.
 Tagungsband der 12. Tagung Phonetik und Phonologie im deutschsprachigen Raum, 9–11.
- [2] Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (release 2). *Published by the Linguistic Data Consortium, University of Pennsylvania*.
- [3] Ben Hedia, S., & Plag, I. (2017). Gemination and degemination in English prefixation: Phonetic evidence for morphological organization. *Journal of Phonetics*, *62*, 34–49. https://doi.org/10.1016/j.wocn.2017.02.002
- [4] Clements, G. N. (2009). Does sonority have a phonetic basis? In Contemporary views on architecture and representations in phonology. The MIT Press. https://doi.org/10.7551/mitpress/9780262182706.003.0007

References II

- [5] Faaß, G., & Eckart, K. (2013). SdeWaC: A corpus of parsable sentences from the web. In I. Gurevych, C. Biemann, & T. Zesch (Eds.), *Language processing and knowledge in the web* (pp. 61–68). Springer.
- [6] Fletcher, H. (1929). Speech and hearing. D. Van Nostrand.
- [7] Hay, J. (2007). The phonetics of 'un'. In J. Munat (Ed.), *Lexical creativity, texts and contexts* (pp. 39–57). John Benjamins.
- [8] Plag, I., & Ben Hedia, S. (2018). The phonetics of newly derived words: Testing the effect of morphological segmentability on affix duration. In S. Arndt-Lappe, A. Braun, C. Moulin, & E. Winter-Froemel (Eds.), *Expanding the lexicon: Linguistic innovation, morphological productivity, and ludicity* (pp. 93–116). De Gruyter. https://doi.org/10.1515/9783110501933-095

- [9] Plag, I., Homann, J., & Kunter, G. (2017). Homophony and morphology: The acoustics of word-final S in English. *Journal of Linguistics*, 53(1), 181–216. https://doi.org/10.1017/S0022226715000183
- [10] Schmitz, D., Baer-Henney, D., & Plag, I. (2021). The duration of word-final /s/ differs across morphological categories in English: Evidence from pseudowords. *Phonetica*, 78(5-6), 571–616. https://doi.org/10.1515/phon-2021-2013
- [11] Seyfarth, S., Garellek, M., Gillingham, G., Ackerman, F., & Malouf, R. (2017). Acoustic differences in morphologically-distinct homophones. *Language, Cognition and Neuroscience*, 33(1), 32–49. https://doi.org/10.1080/23273798.2017.1359634
- [12] Smith, R., Baker, R., & Hawkins, S. (2012). Phonetic detail that distinguishes prefixed from pseudo-prefixed words. *Journal of Phonetics*, 40(5), 689–705. https://doi.org/10.1016/j.wocn.2012.04.002

- [13] Song, J. Y., Demuth, K., Shattuck-Hufnagel, S., & Ménard, L. (2013). The effects of coarticulation and morphological complexity on the production of English coda clusters: Acoustic and articulatory evidence from 2-year-olds and adults using ultrasound. *Journal of Phonetics*, 41(3-4), 281–295.
- [14] Sproat, R., & Fujimura, O. (1993). Allophonic variation in English /l/ and its implications for phonetic implementation. *Journal of Phonetics*, 21(3), 291–311. https://doi.org/10.1016/s0095-4470(19)31340-3
- [15] Strycharczuk, P., & Scobbie, J. M. (2016). Gradual or abrupt? The phonetic path to morphologisation. *Journal of Phonetics*, *59*, 76–91. https://doi.org/10.1016/j.wocn.2016.09.003
- [16] Sugahara, M., & Turk, A. (2009). Durational correlates of English sublexical constituent structure. *Phonology*, *26*(3), 477–524.

- [17] Walsh, T., & Parker, F. (1983). The duration of morphemic and non-morphemic /s/ in English. *Journal of Phonetics*, *11*(2), 201–206.
- [18] Wood, S. N. (2017). *Generalized additive models: An introduction with R* (2nd). CRC Press.
- [19] Zimmermann, J. (2016). Morphological status and acoustic realization: Findings from New Zealand English. *Proceedings of the Sixteenth Australasian International Conference on Speech Science and Technology (SST-2016)*, (December), 201–204.