

Durational differences among Japanese homophones as a function of their meanings

Motoki Saito & Ruben van de Vijver

DGfS2025, Mainz, 07.03.2025

- e.g., time [taim] vs. thyme [taim] (Gahl, 2008).
 - ► Their phonetic realizations should be the same (e.g., Levelt et al., 1999).

e.g., *time* [taim] vs. *thyme* [taim] (Gahl, 2008).

- ► Their phonetic realizations should be the same (e.g., Levelt et al., 1999).
- ► They are however systematically different with respect to...
 - Parts-of-speech (Lohmann, 2018a).
 - Morphological status (Ben Hedia & Plag, 2017; Hay, 2007; Li et al., 2020; Plag & Ben Hedia, 2018; Plag et al., 2017; Schmitz, Baer-Henney, & Plag, 2021; Seyfarth et al., 2017; Smith et al., 2012; Song et al., 2013; Sproat & Fujimura, 1993; Strycharczuk & Scobbie, 2016; Sugahara & Turk, 2009; Walsh & Parker, 1983; Zimmermann, 2016; Zuraw et al., 2021)
 - Frequency (Gahl, 2008; Lohmann, 2018b)
 - Semantics (Baayen et al., 2019; Chuang & Baayen, 2021; Gahl & Baayen, 2024; Saito et al., 2021, 2024; Schmitz, Plag, et al., 2021)

- Morphemes (Hay, 2007; Plag & Ben Hedia, 2018; Plag et al., 2017; Schmitz, Baer-Henney, & Plag, 2021; Seyfarth et al., 2017; Sproat & Fujimura, 1993; Sugahara & Turk, 2009).
- Segments (Ben Hedia & Plag, 2017; Smith et al., 2012).

- Morphemes (Hay, 2007; Plag & Ben Hedia, 2018; Plag et al., 2017; Schmitz, Baer-Henney, & Plag, 2021; Seyfarth et al., 2017; Sproat & Fujimura, 1993; Sugahara & Turk, 2009).
- Segments (Ben Hedia & Plag, 2017; Smith et al., 2012).
- Can be explained by Discriminative Lexicon Model (DLM) (Baayen et al., 2019).
 - It operates on sublexical levels.
 - Different semantics \rightarrow different realizations.

Duration in English

► The vast majority of these studies are based on English.

- ► The vast majority of these studies are based on English.
- Duration is not phonemic and correlated with vowel quality in English.

- ► The vast majority of these studies are based on English.
- Duration is not phonemic and correlated with vowel quality in English.
- English is a so-called stress-timed language.

- The vast majority of these studies are based on English.
- Duration is not phonemic and correlated with vowel quality in English.
- English is a so-called stress-timed language.

 \Downarrow

Durations can easily be adjusted according to stress patterns.

Duration in Japanese

Duration is phonemic.

e.g., 席 [se[↓]ki] 'seat' vs. 世紀 [se[↓]:ki] 'century'

Duration in Japanese

Duration is phonemic.

e.g., 席 [se⁺ki] 'seat' vs. 世紀 [se⁺ɪki] 'century'

► Japanese is a so-called mora-timed language.

e.g., 世紀 [se⁺ ki] 'century' is roughly 1.5 times longer in duration than 席 [se⁺ ki] 'seat'.

Duration in Japanese

Duration is phonemic.

e.g., 席 [se⁺ki] 'seat' vs. 世紀 [se⁺ɪki] 'century'

Japanese is a so-called mora-timed language.
 e.g., 世紀 [se⁺:ki] 'century' is roughly 1.5 times longer in duration than 席 [se⁺ki] 'seat'.

Duration cannot be adjusted so easily in Japanese as in English.

 \downarrow

Research question 1:

Can systematic durational differences among homophones also be observed in Japanese?

Research question 1:

Can systematic durational differences among homophones also be observed in Japanese?

Research question 2:

Are semantic effects tied to "wordness"?

Research question 1:

Can systematic durational differences among homophones also be observed in Japanese?

Research question 2:

Are semantic effects tied to "wordness"?

The present study investigates both word-duration & mora-duration of homophonous words.

 \downarrow

Outcome	WordDur	MoraDur	PredictedBy
H1	\checkmark	\checkmark	DLM
H2	\checkmark		Neither
H3		\checkmark	Neither
H4			Classic

Discriminative Lexicon Model (DLM)

Unconditional vs. conditional semantic support

- Unconditional semantic support represents how well forms are discriminated based on meanings, <u>independently</u> from the within-word position of the sublexical form.
 - e.g., $\langle PROG \rangle \rightarrow [-i\eta] \Rightarrow$ Greater semantic support
 - e.g., $\langle PAST \rangle \rightarrow [-d], [-t], [-\partial d], [Dt], ... \Rightarrow Less semantic support$

Unconditional vs. conditional semantic support

- Unconditional semantic support represents how well forms are discriminated based on meanings, <u>independently</u> from the within-word position of the sublexical form.
 - e.g., $\langle PROG \rangle \rightarrow [-i\eta] \Rightarrow$ Greater semantic support
 - e.g., $\langle PAST \rangle \rightarrow [-d], [-t], [-\partial d], [Dt], ... \Rightarrow Less semantic support$
- Articulation may be influenced by what has been said (~ syntagmatic predictability).
 e.g., encyclo... ...pedia

Unconditional vs. conditional semantic support

- Unconditional semantic support represents how well forms are discriminated based on meanings, <u>independently</u> from the within-word position of the sublexical form.
 - e.g., $\langle \mathsf{PROG} \rangle \rightarrow [-i\eta] \Rightarrow \text{Greater semantic support}$
 - e.g., $\langle PAST \rangle \rightarrow [-d], [-t], [-\partial d], [Dt], ... \Rightarrow Less semantic support$
- Articulation may be influenced by what has been said (~ syntagmatic predictability).
 e.g., encyclo... ...pedia
- Conditional semantic support represents how well forms are discriminated based on meanings, <u>given</u> the sublexical forms preceding the sublexical form of interest.
 e.g., goggles ⇒ -s is more predictable → Less semantic support for -s.
 - e.g., $suns \Rightarrow -s$ is less predictable \rightarrow more semantic support for *-s*.

Corpus

- The "core" section of Corpus of Spontaneous Japanese (CSJ) (The National Institute for Japanese Language, 2006).
 - Approximately 500,000 words.
 - ▶ 44 hours of speech.
 - Formal monologues of spontaneous speech by 177 speakers.
 - Formal dialogues of spontaneous speech by 18 speakers.
 - Read-aloud speech of books by 6 speakers.
 - Forced alignment manually checked/corrected by two phoneticians.

e.g., こうしょう [koːʃoː] is shared by at least 54 words

e.g., こうしょう [koːʃoː] is shared by at least 54 words

→ 交床, 交渉, 交睫, 交鈔, 厚相, 厚賞, 公傷, 公娼, 公相, 公称, 公証, 咬傷, 口承, 口誦, 哄笑, 好尚, 幸勝, 公勝, 工匠, 工商, 工廠, 巧匠, 巧笑, 康正, 康尚, 後章, 後証, 校章, 洪鐘, 甲匠, 紅晶, 綱掌, 翱翔, 考証, 行省, 行粧, 行障, 行賞, 鉱床, 講頌, 講誦, 降将, 高小, 高升, 高声, 高姓, 高尚, 高昇, 高承, 高昌, 高商, 高唱, 高蹤, and 黄鐘.

e.g., こうしょう [koːʃoː] is shared by at least 54 words

- → 交床, 交渉, 交睫, 交鈔, 厚相, 厚賞, 公傷, 公娼, 公相, 公称, 公証, 咬傷, 口承, 口誦, 哄笑, 好尚, 幸勝, 公勝, 工匠, 工商, 工廠, 巧匠, 巧笑, 康正, 康尚, 後章, 後証, 校章, 洪鐘, 甲匠, 紅晶, 綱掌, 翱翔, 考証, 行省, 行粧, 行障, 行賞, 鉱床, 講頌, 講誦, 降将, 高小, 高升, 高声, 高姓, 高尚, 高昇, 高承, 高昌, 高商, 高唱, 高蹤, and 黄鐘.
- e.g., 書く [kaku] 'write' and 掻く [kaku] 'scratch'

e.g., こうしょう [koːʃoː] is shared by at least 54 words

- → 交床, 交渉, 交睫, 交鈔, 厚相, 厚賞, 公傷, 公娼, 公相, 公称, 公証, 咬傷, 口承, 口誦, 哄笑, 好尚, 幸勝, 公勝, 工匠, 工商, 工廠, 巧匠, 巧笑, 康正, 康尚, 後章, 後証, 校章, 洪鐘, 甲匠, 紅晶, 綱掌, 翱翔, 考証, 行省, 行粧, 行障, 行賞, 鉱床, 講頌, 講誦, 降将, 高小, 高升, 高声, 高姓, 高尚, 高昇, 高承, 高昌, 高商, 高唱, 高蹤, and 黄鐘.
- e.g., 書く [kaku] 'write' and 掻く [kaku] 'scratch'
 - 310,574 homophonous tokens in CSJ
 - 20,971 homophonous types in CSJ

Setup and train DLM

- ► Form-matrix:
 - ► Tri-mora representations

Setup and train DLM

- ► Form-matrix:
 - ► Tri-mora representations

- ► Semantics-matrix:
 - ► A pre-trained fastText model (Bojanowski et al., 2017).

- ► Form-matrix:
 - ► Tri-mora representations

- Semantics-matrix:
 - A pre-trained fastText model (Bojanowski et al., 2017).
- ► All the words whose frequency was greater than 1 in CSJ were included.

- ► Form-matrix:
 - ► Tri-mora representations

- Semantics-matrix:
 - A pre-trained fastText model (Bojanowski et al., 2017).
- ► All the words whose frequency was greater than 1 in CSJ were included.
- Words made of only one mora were excluded.
 - e.g., に [ni] "to"
 - Because most of them are function words such as particles.
 - Because a one-mora word is made of only one trimora.
 - ightarrow It would make it difficult to tease apart word-level and mora-level phenomena.

- ► 1,586 word types in orthography
- 1,200 word types in phonetic transcriptions
- ▶ 99,776 word tokens
- 213,399 mora tokens

Analysis

- ► GAMMs (Wood, 2017)
- Dependent variables:
 - Log word duration (i.e., WordDur)
 - Log mora duration (i.e., MoraDur)
- Predictors:
 - Unconditional or conditional semantic support
 - Speech rate
 - Utterance-initial
 - Utterance-final
 - Word frequency
 - Bimora frequency
 - Part-of-speech
 - Gender
 - ► Speaker

Model structures

Model 1: WordDur \sim s(uSemSup, k=3) + Covariates

Model 1: WordDur \sim s(uSemSup, k=3) + Covariates

Covariates: s(SpRate, k=3) + s(Freq, k=3) + s(BimroraFreq, k=3) UttBgn + UttEnd + PoS + Gender + s(Speaker, bs='re') **Model 1:** WordDur \sim s(uSemSup, k=3) + Covariates **Model 2:** WordDur \sim s(cSemSup, k=3) + Covariates

Covariates: s(SpRate, k=3) + s(Freq, k=3) + s(BimroraFreq, k=3) UttBgn + UttEnd + PoS + Gender + s(Speaker, bs='re') Model 1:WordDur \sim s(uSemSup, k=3) + CovariatesModel 2:WordDur \sim s(cSemSup, k=3) + CovariatesModel 3:MoraDur \sim s(uSemSup, k=3) + Covariates

Covariates: s(SpRate, k=3) + s(Freq, k=3) + s(BimroraFreq, k=3) UttBgn + UttEnd + PoS + Gender + s(Speaker, bs='re')
$$\begin{split} \textbf{WIN!} & \rightarrow \textbf{Model 1:} \quad \text{WordDur} \sim s(\textbf{uSemSup}, \textbf{k=3}) + \text{Covariates} \\ \textbf{Model 2:} \quad \text{WordDur} \sim s(\text{cSemSup}, \textbf{k=3}) + \text{Covariates} \\ \textbf{Covariates:} \quad s(\text{SpRate}, \textbf{k=3}) + s(\text{Freq}, \textbf{k=3}) + s(\text{BimroraFreq}, \textbf{k=3}) \\ & \quad \text{UttBgn} + \text{UttEnd} + \text{PoS} + \text{Gender} + s(\text{Speaker}, \textbf{bs='re'}) \\ & \quad \Delta \text{AIC} = 1079.090 \end{split}$$

Results (word-level): GAMM partial effects

Results (mora-level): Model comparison

 Model 3: MoraDur \sim s(uSemSup, k=3) + Covariates WIN! \rightarrow Model 4: MoraDur \sim s(cSemSup, k=3) + Covariates Covariates: s(SpRate, k=3) + s(Freq, k=3) + s(BimroraFreq, k=3) UttBgn + UttEnd + PoS + Gender + s(Speaker, bs='re') Δ AIC = 203.691

Results (mora-level): GAMM partial effects

- ► Greater semantic support → Longer duration
 - Even in a language where duration is phonemic.

- ► Greater semantic support → Longer duration
 - Even in a language where duration is phonemic.
- Such semantic effects occur at the word-level and the mora-level both.

- ► Greater semantic support → Longer duration
 - Even in a language where duration is phonemic.
- Such semantic effects occur at the word-level and the mora-level both.

Outcome	WordDur	MoraDur	PredictedBy
H1	\checkmark	\checkmark	DLM
H2	\checkmark		Neither
H3		\checkmark	Neither
H4			Classic

- ► Greater semantic support → Longer duration
 - Even in a language where duration is phonemic.
- Such semantic effects occur at the word-level and the mora-level both.

Outcome	WordDur	MoraDur	PredictedBy
H1	\checkmark	\checkmark	DLM
H2	\checkmark		Neither
H3		\checkmark	Neither
H4			Classic

? Why does uSemSup perform better to predict WordDur, while cSemSup is better for MoraDur?

- ? Why does uSemSup perform better to predict WordDur, while cSemSup is better for MoraDur?
- \Downarrow
- A. Conditional semantic support captured degrees of decreasing duration within each word well.

Unconditional semantic support captured overall word-specific durational targets well.

Differences between uSemSup and cSemSup

When unconditional SemSup should win

When conditional SemSup should win

When both SemSups perform well

Observed effects

Decreasing mora duration

In fact, mora duration was found to decrease towards the end of the word in the current data.

• Greater semantic support \rightarrow Longer duration.

• Greater semantic support \rightarrow Longer duration.

 \rightarrow Clearer relationships between semantics and forms.

• Greater semantic support \rightarrow Longer duration.

 \rightarrow Clearer relationships between semantics and forms.

The present results echo with the studies that found the positive association between certainty and duration.

► Higher certainty → Longer duration & careful articulation (Cohen, 2014; Kuperman et al., 2007; Tomaschek et al., 2019, 2021; Tucker et al., 2019)

 \downarrow

Adds to the literature that found direct relationships between forms and meanings (Baayen

et al., 2019; Chuang et al., 2020; Gahl & Baayen, 2024).

- Adds to the literature that found direct relationships between forms and meanings (Baayen et al., 2019; Chuang et al., 2020; Gahl & Baayen, 2024).
- Dovetails well also with the literature on sound symbolism and iconicity (Dingemanse &

Thompson, 2020; Dingemanse et al., 2016)

- Adds to the literature that found direct relationships between forms and meanings (Baayen et al., 2019; Chuang et al., 2020; Gahl & Baayen, 2024).
- Dovetails well also with the literature on sound symbolism and iconicity (Dingemanse & Thompson, 2020; Dingemanse et al., 2016)
- Challenges the traditional view of speech production, where semantic effects on phonetic realizations are absent or limited.

- Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de)composition but in linear discriminative learning. <u>Complexity</u>, 2019, 1–39. https://doi.org/10.1155/2019/4895891
 Ben Hedia, S., & Plag, I. (2017). Gemination and degemination in English prefixation: Phonetic evidence for morphological organization. <u>Journal of Phonetics</u>, <u>62</u>, 34–49. https://doi.org/10.1016/j.wocn.2017.02.002
- Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. <u>Transactions of the Association for Computational Linguistics</u>, <u>5</u>, 135–146.
- Chuang, Y.-Y., & Baayen, R. H. (2021). Discriminative learning and the lexicon: NDL and LDL. In M. Aronoff (Ed.), Oxford research encyclopedia of linguistics. Oxford University Press.

Chuang, Y.-Y., Lõo, K., Blevins, J. P., & Baayen, R. H. (2020). Estonian case inflection made simple: A case study in Word and Paradigm morphology with linear discriminative learning. In L. Körtvélyessy & P. Štekauer (Eds.),

Complex words: Advances in morphology (pp. 119–141). Cambridge University Press.

- Cohen, C. (2014).Probabilistic reduction and probabilistic enhancement: Contextual and paradigmatic effects on morpheme pronunciation. <u>Morphology</u>, <u>24</u>(4), 291–323. https://doi.org/10.1007/s11525-014-9243-y
- Dingemanse, M., Schuerman, W., Reinisch, E., Tufvesson, S., & Mitterer, H. (2016).What sound symbolism can and cannot do: Testing the iconicity of ideophones from five languages. Language, 92(2), e117–e133. https://doi.org/10.1353/lan.2016.0034

References III

- Dingemanse, M., & Thompson, B. (2020).Playful iconicity: Structural markedness underlies the relation between funniness and iconicity. <u>Language and Cognition</u>, <u>12</u>(1), 203–224. https://doi.org/10.1017/langcog.2019.49
- Gahl, S. (2008). *Time* and *thyme* are not homophones: the effect of lemma frequency on word durations in spontaneous speech. <u>Language</u>, <u>84(3)</u>, 474–496.
- Gahl, S., & Baayen, R. H. (2024). *Time* and *thyme* again: Connecting english spoken word duration to models of the mental lexicon. <u>Language</u>, <u>100</u>(4), 623–670. https://doi.org/https://doi.org/10.1353/lan.2024.a947037
- Hay, J. (2007). The phonetics of 'un'. In J. Munat (Ed.), Lexical creativity, texts and contexts (pp. 39–57). John Benjamins.

- Kuperman, V., Pluymaekers, M., Ernestus, M., & Baayen, R. H. (2007).Morphological predictability and acoustic duration of interfixes in Dutch compounds. <u>The Journal of the Acoustical Society of America</u>, <u>121</u>(4), 2261–2271. https://doi.org/10.1121/1.2537393
- Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 1–75.
- Li, V. G., Oh, S., Chopra, G., Celli, J., & Shaw, J. A. (2020). Articulatory correlates of morpheme boundaries: Preliminary evidence from intra- and inter-gestural timing in the articulation of the English past tense.

Proceedings of ISSP 2020 - 12th International Seminar on Speech Production.

- Lohmann, A. (2018a). *Cut* (n) and *cut* (v) are not homophones: lemma frequency affects the duration of noun–verb conversion pairs. Journal of Linguistics, 54(4), 753–777. https://doi.org/10.1017/s0022226717000378
- Lohmann, A. (2018b). Time and thyme are not homophones: A closer look at Gahl's work on the lemma-frequency effect, including a reanalysis. <u>Language</u>, <u>94</u>(2), e180–e190. https://doi.org/10.1353/lan.2018.0032
- Plag, I., & Ben Hedia, S. (2018). The phonetics of newly derived words: Testing the effect of morphological segmentability on affix duration. In S. Arndt-Lappe, A. Braun, C. Moulin, & E. Winter-Froemel (Eds.),

Expanding the lexicon: Linguistic innovation, morphological productivity, and ludicity (pp. 93–116). De Gruyter. https://doi.org/10.1515/9783110501933-095

- Plag, I., Homann, J., & Kunter, G. (2017). Homophony and morphology: The acoustics of word-final S in English. Journal of Linguistics, <u>53</u>(1), 181–216. https://doi.org/10.1017/S0022226715000183
- Saito, M., Tomaschek, F., & Baayen, R. H. (2021).Relative functional load determines co-articulatory movements of the tongue tip.
 <u>Proceedings of the 12th International Seminar on Speech Production (ISSP 2020)</u>, 210–213.
- Saito, M., Tomaschek, F., Sun, C.-C., & Baayen, R. H. (2024). Articulatory effects of frequency modulated by semantics. In M. Schlechtweg (Ed.), <u>Interfaces of phonetics</u> (pp. 125–154).
 De Gruyter Mouton. https://doi.org/doi:10.1515/9783110783452-005

- Schmitz, D., Baer-Henney, D., & Plag, I. (2021). The duration of word-final /s/ differs across morphological categories in English: Evidence from pseudowords. <u>Phonetica</u>, <u>78</u>(5-6), 571–616. https://doi.org/10.1515/phon-2021-2013
- Schmitz, D., Plag, I., Baer-Henney, D., & Stein, S. D. (2021).Durational Differences of Word-Final /s/ Emerge From the Lexicon: Modelling Morpho-Phonetic Effects in Pseudowords With Linear Discriminative Learning. <u>Frontiers in Psychology</u>, <u>12</u>(680889), 1–20. https://doi.org/10.3389/fpsyg.2021.680889
- Seyfarth, S., Garellek, M., Gillingham, G., Ackerman, F., & Malouf, R. (2017). Acoustic differences in morphologically-distinct homophones.
 <u>Language, Cognition and Neuroscience</u>, <u>33</u>(1), 32–49.
 https://doi.org/10.1080/23273798.2017.1359634
- Smith, R., Baker, R., & Hawkins, S. (2012).Phonetic detail that distinguishes prefixed from pseudo-prefixed words. <u>Journal of Phonetics</u>, <u>40</u>(5), 689–705. https://doi.org/10.1016/j.wocn.2012.04.002
- Song, J. Y., Demuth, K., Shattuck-Hufnagel, S., & Ménard, L. (2013). The effects of coarticulation and morphological complexity on the production of English coda clusters: Acoustic and articulatory evidence from 2-year-olds and adults using ultrasound. <u>Journal of Phonetics</u>, <u>41</u>(3-4), 281–295.
- Sproat, R., & Fujimura, O. (1993).Allophonic variation in English /l/ and its implications for phonetic implementation. <u>Journal of Phonetics</u>, <u>21</u>(3), 291–311. https://doi.org/10.1016/s0095-4470(19)31340-3

References IX

- Strycharczuk, P., & Scobbie, J. M. (2016).Gradual or abrupt? The phonetic path to morphologisation. Journal of Phonetics, 59, 76–91. https://doi.org/10.1016/j.wocn.2016.09.003
- Sugahara, M., & Turk, A. (2009).Durational correlates of English sublexical constituent structure. <u>Phonology</u>, <u>26</u>(3), 477–524.
- The National Institute for Japanese Language. (2006).

Construction of the corpus of spontaneous japanese (Vol. 124).

Tomaschek, F., Plag, I., Ernestus, M., & Baayen, R. H. (2019). Phonetic effects of morphology and context: Modeling the duration of word-final S in English with naïve discriminative learning. Journal of Linguistics, 1–39. https://doi.org/10.1017/S0022226719000203

- Tomaschek, F., Tucker, B. V., Ramscar, M., & Baayen, R. H. (2021).Paradigmatic enhancement of stem vowels in regular English inflected verb forms. <u>Morphology</u>, <u>31</u>(2), 171–199. https://doi.org/10.1007/s11525-021-09374-w
- Tucker, B. V., Sims, M., & Baayen, R. H. (2019). Opposing forces on acoustic duration. <u>PsyArXiv</u>, 1–38. https://doi.org/10.31234/osf.io/jc97w
- Walsh, T., & Parker, F. (1983). The duration of morphemic and non-morphemic /s/ in English. Journal of Phonetics, <u>11</u>(2), 201–206.
- Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd). CRC Press.
- Zimmermann, J.

(2016).Morphological status and acoustic realization: Findings from New Zealand English. Proceedings of the Sixteenth Australasian International Conference on Speech Science and ⁻ (December), 201–204. Zuraw, K., Lin, I., Yang, M., & Peperkamp, S. (2021).Competition between whole-word and decomposed representations of English prefixed words. <u>Morphology</u>, <u>31</u>(2), 201–237. https://doi.org/10.1007/s11525-020-09354-6