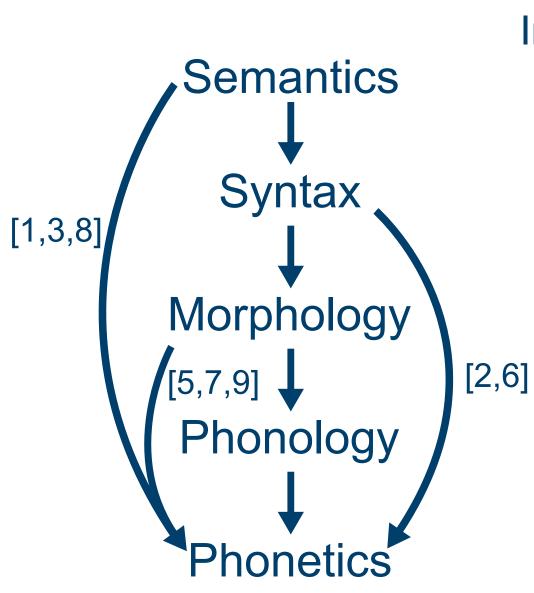

How meaning affects the duration of Japanese homophonous words

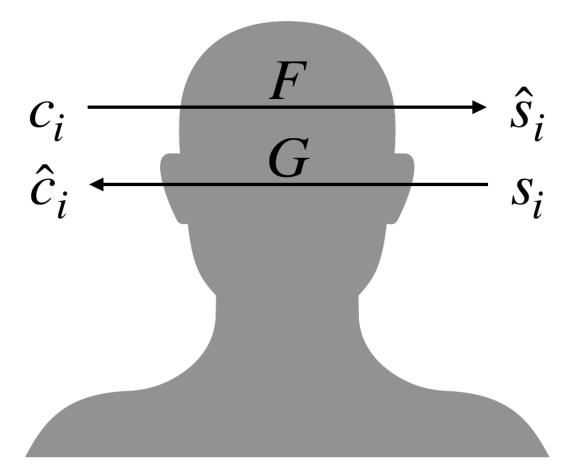

Carl von Ossietzky Universität Oldenburg

Motoki Saito¹ & Ruben van de Vijver²

¹Carl von Ossietzky Universität Oldenburg ²Heinrich Heine Universität Düsseldorf

Background

Investigated predominantly ...


English where **duration** is not contrastive

where duration is contrastive

Analysis

Discriminative Lexicon Model

(Unconditional) Semantic Support

<PROG $> \rightarrow /-i\eta/ \rightarrow$ Less uncertainty → Greater semantic support

<PAST> → /-d/, /-t/, /-əd/, /-ɔːt/ → Greater uncertainty → Less semantic support

Conditional Semantic Support

e.g., goggles → -s is more predictable → Less conditional semantic support for -s

e.g.., suns \rightarrow -s is less predictable

→ Greater conditional semantic support for -s

<u>Aims</u>

- 1. Does homophone duration covary with **semantics** also in **Japanese**?
- 2. Are semantic effects tied to **lexicality** of words?

Main Finding -

Does semantics affect homophone duration in Japanese?

YES!

Generalized additive mixed-effects models

Model 1: WordDur ~ s(uSemSup) + Covariates Model 2: WordDur ~ s(cSemSup) + Covariates

Model 3: MoraDur ~ s(uSemSup) + Covariates

Model 4: MoraDur ~ s(cSemSup) + Covariates

Covariates:

s(SpRate) + s(Freq) + s(BimoraFreq) + UttBgn + UttEnd + PoS + Gender + s(Speaker, bs='re')

SpRate: Numbers of moras / durations of utterances

Freq: Word frequency from CSJ

BimoraFreq: Sum of bimora frequency / word length UttBgn & UttEnd: Utterance-initial/-final positions

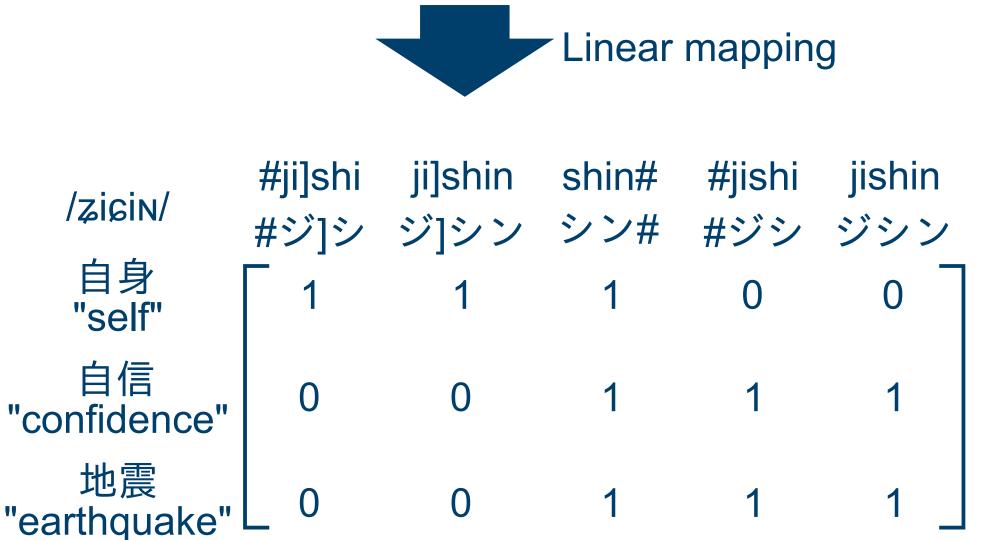
PoS: Parts-of-speech

Speaker: Speaker (as a random intercept)

Data

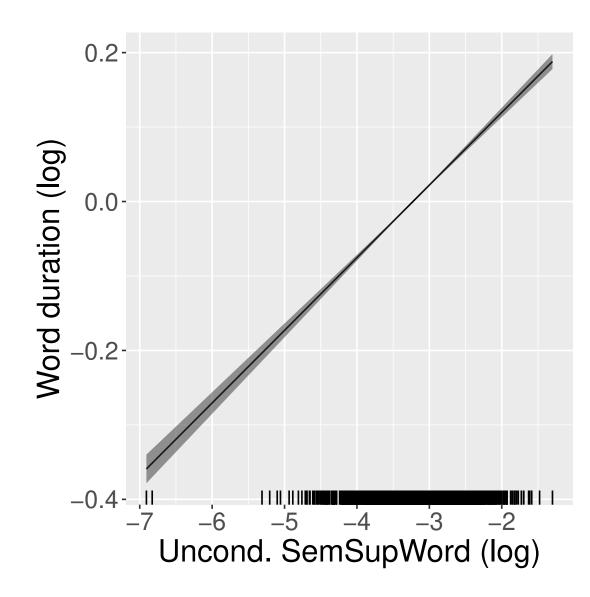
Corpus of Spontaneous Japanese (CSJ) [10]

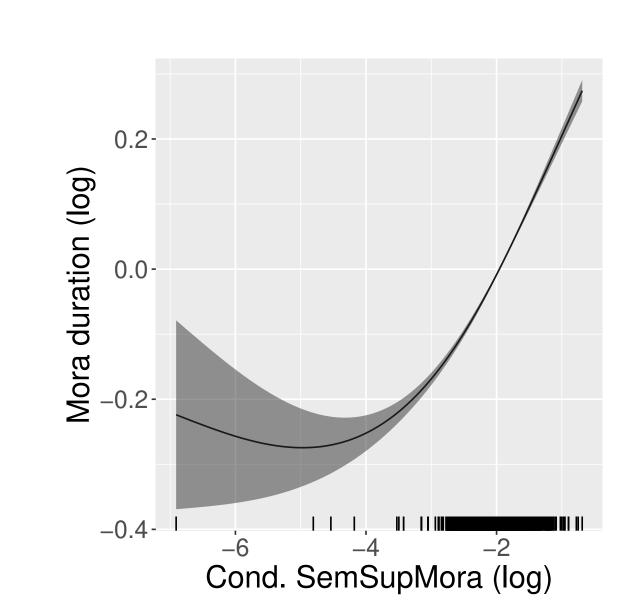
- The "core" section
- 44 hours of speech
- 500,000 words
- Mostly formal monologues


99,776 homophonous word tokens

- 1,586 word types in orthography
- 1,200 word types in phonetic transcriptions

Semantic & form representations


	/zigin/	S001	S002	S003	S004	S005
	自身 "self"	-0.34	0.78	0.61	0.45	0.09
" C	自信 confidence"	0.22	-0.37	-0.10	0.77	0.36
"e	地震 earthquake"	0.01	0.56	-0.86	-0.00	0.34_


Semantic representation: A pre-trained fastText model [4]

Form representation: Tri-moras with pitch accents

Results

Unconditional semantic support → better for **word** duration **Conditional** semantic support → better for **mora** duration

Greater unconditional semantic support

→ Longer word duration

Greater conditional semantic support

→ Longer mora duration

Discussion

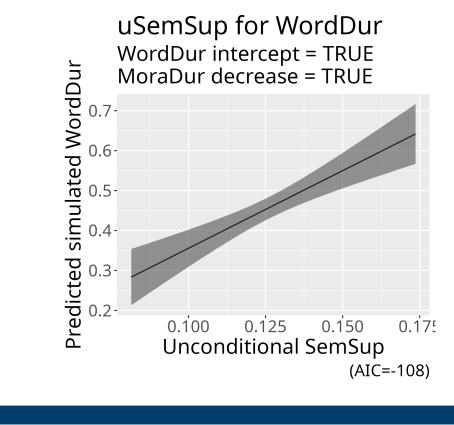
Homophone duration \rightarrow **correlated with certainty** between semantics & forms. also in a mora-timed language with durational contrasts.

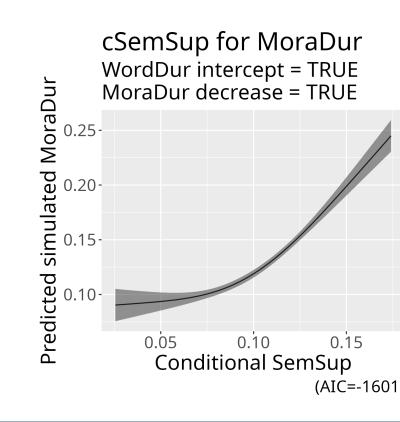
/zicin/

自身

"self"

自信


地震

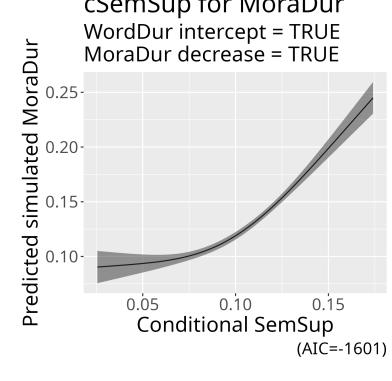

is unconditional semantic support better for word duration? is **conditional** semantic support better for **mora** duration?

Unconditional semantic support → **Word-level idiosyncracy Conditional** semantic support → **Decreasing mora duration** within a word

Similar u/cSemSup effects were observed only when Simulations confirmed: 1) each word has its own durational intercept and 2) mora duration decreases within a word.

References

[1] Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative lexicon and production grounded not in (de)composition but in linear discriminative learning. Complexity, 2019, 1–39. [2] Gahl, S. (2008). Time and thyme are not homophones: the effect of lemma frequency on word durations in spontaneous speech. Language, 84(3), 474–496.


[3] Gahl, S., & Baayen, R. H. (2024). Time and thyme again: Connecting english spoken word duration to models of the mental lexicon. Language, 100(4), 623–670.

[4] Grave, E., Bojanowski, P., Gupta, P., Joulin, A., & Mikolov, T. (2018). Learning word vectors for 157 languages. Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018). [5] Hay, J. (2007). The phonetics of 'un'. In J. Munat (Ed.), Lexical creativity, texts and contexts (pp. 39–57). John Benjamins.

[6] Lohmann, A. (2018). Cut (n) and cut (v) are not homophones: lemma frequency affects the duration of noun-verb conversion pairs. Journal of Linguistics, 54(4), 753–777. [7] Plag, I., Homann, J., & Kunter, G. (2017). Homophony and morphology: The acoustics of word-final S in English. Journal of Linguistics, 53(1), 181–216.

[8] Saito, M., Tomaschek, F., Sun, C.-C., & Baayen, R. H. (2024). Articulatory effects of frequency modulated by semantics. In M. Schlechtweg (Ed.), Interfaces of phonetics (pp. 125–154). De Gruyter Mouton.

[9] Smith, R., Baker, R., & Hawkins, S. (2012). Phonetic detail that distinguishes prefixed from pseudo-prefixed words. Journal of Phonetics, 40(5), 689–705. [10] The National Institute for Japanese Language. (2006). Construction of the corpus of spontaneous japanese (Vol. 124).

