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Although a number of studies have challenged the traditional assumption that there are truly
homophonous words, they are exclusively based on English, a language in which duration
is not phonemic. This study extends research on the phonetic properties of homophonous
words to Japanese, a language in which duration is phonemic. Based on a corpus of
spontaneous Japanese speech, we found that 1) homophonous words differed in duration
among the members of the homophonous group, 2) durations of homophonous words were
positively correlated with degrees of certainty about the predicted word forms predicted
from the word meanings, and 3) mora duration was sensitive to the contextual predictability
of the mora within the word, while word duration was not sensitive to its contextual
predictability.
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1. INTRODUCTION

Sounds are used to express meanings, and meanings are differentiated by sounds.
In most psycholinguistic models, these two parts of language are separated by at
least one other component such as syntax (e.g., Dell 1986, Levelt & Wheeldon
1994, Dell et al. 1997, Levelt et al. 1999, Dell et al. 2007). As a consequence of
this extra component, meanings of words cannot be used to directly predict their
sounds. If meanings would indeed not predict phonetic properties of a word, it
would mean that homophones are produced the same.

Although homophones are not the rarest phenomenon in languages, it remains
to be investigated how they are disambiguated. Obviously, homophones are
disambiguated by context to some extent. If context is the only cue to disambiguate
homophones, they do not have to differ in their phonetic realizations (e.g., Levelt
et al. 1999).

However, this assumption has been questioned with evidence from systematic
relations between phonetic realizations of words and their part-of-speech
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properties (Lohmann 2018a), their morphological status (Walsh & Parker 1983,
Sproat & Fujimura 1993, Hay 2007, Sugahara & Turk 2009, Smith et al. 2012,
Song et al. 2013, Strycharczuk & Scobbie 2016, Zimmermann 2016, Ben Hedia &
Plag 2017, Plag et al. 2017, Plag & Ben Hedia 2018, Seyfarth et al. 2018, Li et al.
2020, Schmitz et al. 2021a, Zuraw et al. 2021), frequency of occurrence (Gahl
2008, Lohmann 2018b), and also their meanings (Baayen et al. 2019, Chuang et al.
2021, Saito et al. 2021, Schmitz et al. 2021b, Saito et al. 2023, Gahl & Baayen in
press, Saito et al. under revision). For example, homophones have been found to
systematically differ from each other, depending on their frequencies (Gahl 2008,
Lohmann 2018b), their morphological make-up (Hay 2007, Plag et al. 2017,
Schmitz et al. 2021a), and semantic distances between homophonous pairs (Gahl
& Baayen in press).

Especially relevant for the topic of the current study, semantics has been found
to influence phonetic realizations in several ways. Baayen et al. (2019) found that
uncertainty in a word form given the word’s meaning led to longer duration of
the word. Gahl & Baayen (in press) reported longer duration of homophonous
words when the speaker is more certain about the form discriminated by its
meaning. Saito et al. (under revision) extended these findings and found that
these effects of semantics can also influence coarticulatory tongue movements. In
addition, Chuang et al. (2021) showed that semantic effects can also be observed
for pseudowords, due to overlaps between pseudowords and existing words in
terms of phonology. These observations suggest that phonetic realizations of
homophonous words are more differentiated than assumed by traditional models
and can contribute to disambiguating homophonous words.

The studies discussed so far have been based exclusively on English. In English,
the durational differences between vowels are not phonemic and correlated with
vowel quality. As a consequence, vowel length itself is not contrastive. In addition,
English is said to be a so-called stress-timed language, in which the intervals
between stressed syllables stay roughly stable. In other words, duration can easily
be adjusted to accommodate phonological environments in English. It would not
be a serious problem to distinguish homophones, because different vowel qualities
are enough to discriminate homophonous words from each other.

However, in Japanese, duration is contrastive: 席 [seŤki] ‘seat’ vs. 世紀
[seŤ:ki] ‘century’1. In addition, Japanese is a so-called mora-timed language,
where each mora occupies roughly the same duration. For example, いい [iŤ:]
‘good’ is about twice as long as 胃 [i] ‘stomach’. As a consequence, duration
(especially of each mora) cannot be lengthened or shortened so easily in Japanese
as in English. With such phonological constraints, it is still an open question
whether, and if so, how Japanese homophonous words are disambiguated. One
possibility is that Japanese homophones are disambiguated solely by context

[1] Japanese is a pitch-accent language, and different lexical items can be distinguished by where
the pitch drops. The downstep symbol (i.e., Ť) indicates the pitch drop. Not all Japanese words
have a pitch accent. For those words, the downstep symbol Ť is not indicated.
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due to tight phonological constraints on vowel length. It is also possible that
Japanese homophonous words show systematic durational differences in their
phonetic realizations even with the phonological constraints on vowel length. In
order to generalize across languages the observations that homophonous words can
be phonetically realized with systematically different durations, an investigation in
the Japanese language is important. The first aim of the current study is, therefore:

Aim 1: To investigate whether Japanese, a language with stricter
phonological constraints on durational differences, would show
systematic differences in duration for homophones.

The literature also indicates that homophones are distinguished not only by their
(word) durations but also by durations of their constituents, such as morphemes
(Sproat & Fujimura 1993, Hay 2007, Sugahara & Turk 2009, Plag et al. 2017, Plag
& Ben Hedia 2018, Seyfarth et al. 2018, Schmitz et al. 2021a) and segments (Smith
et al. 2012, Ben Hedia & Plag 2017). Systematic differences in duration in units
smaller than words are not expected from the traditional perspectives of speech
production (e.g., Dell et al. 1997, Levelt et al. 1999). According to traditional
models of speech production, durations should not differ systematically according
to systematic differences in higher levels such as morphological makeup, as long
as the same segmental makeup is shared (as is the case for homophones), whether
the duration of interest is the duration of a word or that of its smaller units.

Although such a conceptualization of the speech production process is
dominant, some alternative viewpoints have been proposed. The Discriminative
Lexicon Model (DLM) (Baayen et al. 2019) is one such model. DLM predicts
durations of sublexical units directly from the meaning of words. It, therefore,
straightforwardly predicts that homophones can be different in their word- and
constituent-durations, as long as they have different meanings. The second aim
of the current study is therefore to investigate whether systematic differences in
phonetic realizations among homophones are tied to lexical items and how they
are stored. If systematic influences from upper levels, such as semantics, affect
units smaller than words, as predicted by DLM, homophones should also differ in
the durations of their sublexical forms. See Section 2 for more details about DLM.

Aim 2: To investigate if effects of upper-level information such as
semantics are tied to lexicality of words.

For these two aims, the current study investigated Japanese homophones with
respect to duration of words and moras. The choice of moras was motivated by
the fact that Japanese is based on moras, rather than syllables, as is reflected
in the Japanese writing system, which uses hiragana and katakana and the On
and Kun readings of kanji, all of which are mora-based. Each mora takes up
roughly the same duration. Each of word- and mora-duration could significantly
differ in durations among homophones. Therefore, four possible outcomes could
be possible: 1) word duration and mora duration both significantly differ, 2) only
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word duration significantly differs, 3) only mora duration significantly differs, and
4) Neither of them shows significant differences in durations. The first possibility
is predicted by DLM, and the last possibility is predicted by traditional speech
production models. The second and third possible outcomes are not predicted by
either of the frameworks.

Table 1. The possible combinations of observations and the predictions by the
models.

Outcome WordDur MoraDur PredictedBy

H1 ✓ ✓ DLM
H2 ✓ Neither
H3 ✓ Neither
H4 Traditional

2. DISCRIMINATIVE LEXICON MODEL

2.1. Word production in DLM

The Discriminative Lexicon Model (DLM) is a mathematical/computational model
of speech comprehension and speech production, based on discriminative learning
(Baayen et al. 2011, 2019). In most applications, the model has only three
components, which are word forms, word meanings, and associations between
them2.

A form of a word is represented as a vector of numbers in DLM. For example
the form vectors of cat [kæt], rat [ôæt], and hat [hæt] can be defined as follows,
where # indicates a word boundary3:

[2] More than three components can be conceptualized. For example, visual and auditory inputs
could theoretically have their own components. Furthermore, words do not have to be the basic
unit on which the model operates. Any other size of linguistic units can be used. It does not have
to be based on linguistic units. For example, acoustics can be adopted directly as word forms
(Shafaei-Bajestan et al. 2021). It is an open and empirical question what components should be
set up in the model of speech comprehension and production and what units should be used in
what way

[3] The current study adopted triphone-based representations of word forms, although it is not a
requirement of DLM. For more details, see Appendix B.
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ccat =
#kæ #ræ #hæ kæt ôæt hæt æt#[ ]

cat 1 0 0 1 0 0 1 (1)

crat =
#kæ #ræ #hæ kæt ôæt hæt æt#[ ]

rat 0 1 0 0 1 0 1 (2)

chat =
#kæ #ræ #hæ kæt ôæt hæt æt#[ ]

hat 0 0 1 0 0 1 1 (3)

Similarily, word-meanings are also represented in terms of vectors in DLM. The
meanings of cat, rat, and hat may be defined as follows4:

scat =
<ANIMATE> <OBJECT> <PREDATOR> <PREY>[ ]

cat 1 0 1 0 (4)

srat =
<ANIMATE> <OBJECT> <PREDATOR> <PREY>[ ]

rat 1 0 0 1 (5)

shat =
<ANIMATE> <OBJECT> <PREDATOR> <PREY>[ ]

hat 0 1 0 0 (6)

Associations between word-meanings and word forms, namely which aspects
of meanings are related to which triphones to what extent, can be expressed by a
matrix. For the current example with cat, rat, and hat, the association matrix G
would be as follows:

G0 =

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 0 0 0 0 0

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(7)

Each cell in the association matrix represents an association weight from a certain
aspect in semantics to a certain triphone. All the cell values in the matrix are

[4] For explanatory reasons we use one-hot encoded semantic vectors, but in our models we will
use real valued semantic vectors. The interpretation of real-valued semantic vectors is explained
on page 12.
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initialized to zero for now, which might be conceptualized as the hypothetical state
of linguistic knowledge before learning has been started. To make clear that all the
associations are initialized to be zero in the current state (in Equation 7), the suffix
‘0’ is added to ‘G’.

In DLM, word production is conceptualized as predicting word forms based
on word-meanings as well as the associations between meanings and forms. This
process can be expressed mathematically as follows:

sG0 = ĉ (8)

The hat (i.e., “ ˆ ”) indicates that the form vector (i.e., ĉ) is a prediction, not a
correct word form. In fact, with such a blank weight matrix as laid out in Equation
(7), a prediction of a word form will be far away from the correct vector. For
example, with the blank matrix, the word form of hat will be predicted as follows:

shat G0 = ĉhat (9)

=

#kæ #ræ #hæ kæt ôæt hæt æt#[ ]
hat 0 0 0 0 0 0 0 (10)

The system needs to learn that, in this small example world with only three words,
the meaning of <object> is associated with the triphones #hæ, hæt, and æt#.
This can be achieved by considering what errors the system made in predicting
the form vector of hat in the current example, namely:

chat − ĉhat =
#kæ #ræ #hæ kæt ôæt hæt æt#[ ]

hat 0 0 1 0 0 1 1 (11)

The error vector indicates which sublexical forms should have been predicted
how. In Equation (11), it is indicated that #hæ, hæt, and æt# should have been
predicted with greater positive values, namely 1. The error vector (Equation 11),
however, does not tell us which associations exactly should be fixed. Since this
error occurred when the input semantic vector was shat, which contained 1 only in
the <object> dimension (see Equation 6), the associations from <object> to#hæ,
hæt, and æt# should be updated. This reasoning can be achieved mathematically
by multiplying the error vector with (the transpose of) the input semantic vector
shat as below in Equations (12–15).
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s⊤hat (chat − ĉhat) (12)

=

hat


<ANIMATE> 0
<OBJECT> 1

<PREDATOR> 0
<PREY> 0

#kæ #ræ #hæ kæt ôæt hæt æt#[ ]
0 0 1 0 0 1 1

(13)

=

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 1 0 0 1 1

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(14)

= ΔG1 (15)

The operation effectively ‘expands’ the row of the error vector from just a single
word (i.e., hat) to the semantic dimensions. The end result (i.e., ΔG) has the same
shape and dimensions as the weight matrix G0 (Equation 7) and represents which
associations should be fixed how much in which directions. ΔG, therefore, tells us
that the associations from <object> to #hæ, hæt, and æt# should be fixed in
the positive direction by 1. The ‘fix’ of the G0 matrix is achieved by adding this
error matrix (i.e., ΔG) to the previous state of the G matrix (i.e., G0 in Equation
7), namely:
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G0 + ΔG1 (16)

=

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 0 0 0 0 0

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(17)

+

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 1 0 0 1 1

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(18)

=

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 1 0 0 1 1

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(19)

= G1 (20)

The suffix ‘1’ indicates that it is the updated state from G0 by one step by adding
ΔG. In this simple example, the updated association matrix G1 would produce the
perfect prediction for the word form of hat. However, in a real-world application
with much more words, smaller updates in association weights at a time would
produce a better performance. The size of updates in association weights can
be tuned by adding a sufficiently small number to the error matrix such as ΔG1
(Equation 15), e.g. 0.1, as below:
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G0 + ΔG1 · 0.1 (21)

=

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 0 0 0 0 0

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(22)

+

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 0.1 0 0 0.1 0.1

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(23)

=

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0 0 0 0 0 0 0
<object> 0 0 0.1 0 0 0.1 0.1

<predator> 0 0 0 0 0 0 0
<prey> 0 0 0 0 0 0 0

(24)

= G1 (25)

The updating rule described above (Equations 7–25) is summarized below:

G𝑡+1 = G𝑡 + s⊤𝑖 (c𝑖 − ĉ𝑖) · 𝜂 (26)

where 𝑖 represents the index of a certain word and 𝜂 represents a learning rate.
After a sufficient amount of learning events, associations can come to an

equilibrium state, where associations do not get updated much any more. The
equilibrium state can efficiently estimated by stacking up word form vectors and
word-meaning vectors into matrices. The matrix of stacked-up form vectors is
conventionally expressed as C and that of stacked-up semantic vectors is expressed
as S.



SAITO, VAN DE VIJVER 10

C =

#kæ #ræ #hæ kæt ôæt hæt æt#[ ]cat 1 0 0 1 0 0 1
rat 0 1 0 0 1 0 1
hat 0 0 1 0 0 1 1

(27)

S =

<ANIMATE> <OBJECT> <PREDATOR> <PREY>[ ]cat 1 0 1 0
rat 1 0 0 1
hat 0 1 0 0

(28)

The weight matrix G is unknown. The cell values of G can be estimated as follows5:

SG = C (29)

S⊤SG = S⊤C (30)

(S⊤S)−1 (S⊤S)G = (S⊤S)−1S⊤C (31)

G = (S⊤S)−1S⊤C (32)

Though these equations might look daunting to those not versed in matrix algebra,
the logic is straightforward. Since we know S and C, all we need to do is to move
them to one side of the equal sign and move G to the other side. Just like solving
the equation: 4𝑥 = 8. A weight matrix G estimated this way (i.e., Equation 32)
converges to the equilibrium state which would be reached eventually by learning
association weights through a series of events (i.e., Equation 26). This way of
estimating association weights (i.e., Equation 32) is also be called the endstate-
learning, focusing on the fact that the endstate (i.e., equilibrium state) of learning
is estimated directly.

The G matrix for the simple example lexicon above would be as follows:

[5] The weight matrix G can also be estimated, using the Moore-Penrose pseudo-inverse, as
follows: G = S−1C. The estimation by the Moore-Penrose pseudo-inverse can differ from that
by Equation (32) only when S has more columns than rows, namely when the semantic space
is defined by a larger number of semantic dimensions than the number of words.
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G =

#kæ #ræ #hæ kæt ôæt hæt æt#


<animate> 0.33 0.33 0.00 0.33 0.33 0.00 0.67
<object> 0.00 0.00 1.00 0.00 0.00 1.00 1.00

<predator> 0.67 −0.33 0.00 0.67 −0.33 0.00 0.33
<prey> −0.33 0.67 0.00 −0.33 0.67 0.00 0.33

(33)

Conceptually, the weight matrix G can be interpreted as a mature linguistic
knowledge. For example, in the example G matrix above, the meaning of
<animate> is learned to be associated with #kæ and #ræ, namely the word-
initial ca- and ra-. The meaning <animate> alone cannot determine between cat
and rat. Therefore, the association weights are split between them (i.e., 0.33). In
contrast, the meaning of <object> co-occurs unambiguously with #hæ, namely
the word-initial ha-. Consequently, the association weight from <object> to #hæ
is 1.00.

With ‘mature’ linguistic knowledge about associations between word forms and
word-meanings, the speaker can produce a word form based on a word-meaning.
The production of a word form is expressed in DLM as the multiplication of a
certain semantic vector s𝑖 and the association matrix G as below:

s𝑖G = ĉ𝑖 (34)

Although it is not likely that one speaker has to produce all the words in the
language, it would be convenient to have a trained model to produce all the words
to see the model’s accuracy of predictions. For this purpose, it is possible to give a
model semantic vectors one by one, having it produce a single form vector for each
semantic vector. However, such a lengthy and redundant process can be simplified
by performing the multiplication in Equation (34) with the semantic matrix S,
instead of semantic vectors, as follows:

SG = Ĉ (35)

Note that, in (35), each row of S is taken out and multiplied with G to produce a
form vector in the same row of Ĉ. Each row in Ĉ therefore represents a predicted
form vector for a certain word (for the row), based on the word’s meaning and the
learned associations between word forms and word-meanings. The Ĉ matrix for
the example lexicon above would be as follows:
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Ĉ =

#kæ #ræ #hæ kæt ôæt hæt æt#[ ]cat 1 0 0 1 0 0 1
rat 0 1 0 0 1 0 1
hat 0 0 1 0 0 1 1

(36)

For this small example lexicon, the predicted form vectors in Ĉ are all exactly the
same as the correct (gold-standard) form vectors defined in C, namely 100% of
prediction accuracy.

In the example above, word-meanings were defined only with 1 and 0, based
on hand-made semantic dimensions. However, it is not realistic and highly likely
to be impracticable to define enough semantic dimensions in order to distinguish
all the words in a language. Since the current study is mainly concerned with
speech production, rather than defining a complete set of semantic features, it is
enough and better from the perspective of replicability to define semantics with
an algorithm that has been known to be able to approximate enough what we call
‘meanings’, namely a word-embedding model (Landauer & Dumais 1997) such as
fastText (Bojanowski et al. 2017). Consequently, semantic vectors and a semantic
matrix made of those semantic vectors are all real-valued. The interpretation
of each number is the strength of the association of a word with a semantic
dimension. As a word embedding customarily has a vector of length 300, each of
which represents a semantic dimension, it is no longer possible to interpret each
semantic dimension. However, the whole process and interpretations explained
above, regarding the production process in DLM, are all identical.

2.2. Word comprehension in DLM

The previous section was concerned with the word-production process in DLM,
where word forms were produced based on word-meanings. The comprehension
process in DLM operates in the opposite direction, namely to produce a word-
meaning given a word form. The comprehension process has its own association
weight matrix, which is conventionally called F. The weight matrix F has sublexical
forms as rows and semantic dimensions as columns, and it can conceptually be
understood as a learned linguistic knowledge about what word forms mean. The
weight matrix F can be estimated in the same way explained in the previous
section for the production weight matrix G, namely either incrementally, in which
associations are learned word by word, or analytically, in which an equilibrium
state of F is estimated at once. The latter way of estimating 𝐹 is illustrated below.
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CF = S (37)

C⊤CF = C⊤S (38)

(C⊤C)−1 (C⊤C)F = (C⊤C)−1C⊤S (39)

F = (C⊤C)−1C⊤S (40)

The F matrix for the example above with cat, rat, and hat would be as follows.
Note that the associations in F and G are not identical.

F =

<animate> <object> <predator> <prey>



#kæ 0.30 −0.10 0.40 −0.10
#ræ 0.30 −0.10 −0.10 0.40
#hæ −0.20 0.40 −0.10 −0.10
kæt 0.30 −0.10 0.40 −0.10
ræt 0.30 −0.10 −0.10 0.40
hæt −0.20 0.40 −0.10 −0.10
æt# 0.40 0.20 0.20 0.20

(41)

With an estimated F, the listener can ‘understand’ a word-meaning from the
sublexical forms of the word. Using the matrix notation, predicted meanings from
word forms by the model can be expressed as follows. The Ŝ matrix for the example
lexicon above will be identical to S, namely the perfect accuracy, as was the case
for the estimation of Ĉ.

CF = Ŝ (42)

2.3. Production of homophones in DLM

DLM predicts that homophones are easier to produce while difficult for
comprehension. To demonstrate, suppose another tiny toy lexicon, which contains
only two Japanese words. They are書く [kakW] ‘write’ and角 [kakW] ‘a certain
type of a piece in the Japanese chess’. They are homophonous and made up of two
moras, as evident from the same words written in hiragana (another writing system
in Japanese):かく ‘write’ andかく ‘a piece in the Japanese chess’. Each hiragana
character represents one mora of sound. For this toy lexicon, the C matrix can be
set up as below, using trimoras as the basic sublexical unit. Note that both of the
words are assumed to share the exactly same phonetic realizations.
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C =

#かく かく#[ ]
書く 1 1
角 1 1

(43)

For simplicity, suppose that each of the two words has its own symbolic
meaning with the meanings of書く ‘write’ and角 ‘a piece in the Japanese chess’
being <write> and <chess> respectively. Then, the S matrix can be set up as
below.

S =

<WRITE> <CHESS>[ ]
書く 1 0
角 0 1

(44)

Based on the word forms and meanings defined this way, the association matrix
in the comprehension side will be as follows. Note that this estimation is carried
out in the endstate-learning method (see Section 2.1 for more detail).

F =

<write> <chess>[ ]
#かく 0.25 0.25
かく# 0.25 0.25

(45)

Since the two words in the toy lexicon are homophonous, namely made up of the
same set of trimoras, none of the two trimoras can be associated with either of
the two meanings. This complete ambiguity leads to the complete ambiguity in
predicting word-meanings from the word forms, as seen in the Ŝ matrix below.

Ŝ =

<WRITE> <CHESS>[ ]
書く 0.5 0.5
角 0.5 0.5

(46)

where both of the meanings are supported equally, based on the word formかく
[kakW].

In contrast, homophony does not deteriorate the production process. Based on
the same C and S matrices, the association weights on the production side (i.e.,
G) are estimated as follows.
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G =

#かく かく#[ ]
<write> 1 1
<chess> 1 1

(47)

Both of the meanings are associated maximally to both of the trimoras. This is
because the same form is to be predicted always whether the input meaning is
<write> or <chess>. Because of the complete associations between the meanings
and the trimoras, the predictions of the model about the word forms are also perfect
with no sign of deterioration due to homophony (Equation 48).

Ĉ =

#かく かく#[ ]
書く 1 1
角 1 1

(48)

The resistance of the production process against homophony is again due to the
fact that the model only needs to produce the same form, regardless of the input
meaning.

The example above involves one artifact because of simplification. The
meanings of書く ‘write’ and角 ‘a piece in the Japanese chess’ were defined with
their own symbolic meanings, which were orthogonal (i.e., completely unrelated)
to each other6. However, the assumption of orthogonality among word meanings
is unrealistic. Some words can be similar to each other than others. For example,
another Japanese word 記す [SiRWsW] ‘write’ shares the meaning of <write>
with 書く [kakW] ‘write’. With this word added to the toy lexicon above, the C
and S matrices will be updated as follows.

[6] Orthogonality between the two meanings in the example can be shown by calculating cosine
similarity between the two meanings, for example, namely the row vectors in the S matrix
(Equation 44). It will be

CosSim(s書く, s角 ) =
s書く · s角


s書く


 


s角


 =

[
1 0

]
·
[
0 1

]


[1 0
]


 


[0 1

]


 =
1 · 0 + 0 · 1

√
12 + 02

√
02 + 12

=
0
1
= 0

The cosine similarity of 0 represents no association between the two vectors.
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C =

#かく かく# #しる しるす るす#[ ]書く 1 1 0 0 0
角 1 1 0 0 0
記す 0 0 1 1 1

(49)

S =

<WRITE> <CHESS>[ ]書く 1 0
角 0 1
記す 1 0

(50)

Shared meanings such as <write> in the example make production more
difficult, while it does not deteriorate comprehension. It is the opposite case to the
problem homophones cause for the comprehension process. In comprehension,
the model needs to predict the meaning of <write>, whether the input form is書
く or記す, thus a simpler task for comprehension. Below are the F and Ŝ matrices,
based on the C and S matrices above.

F =

<write> <chess>


#かく 0.25 0.25
かく# 0.25 0.25
#しる 0.33 0.00
しるす 0.33 0.00
るす# 0.33 0.00

(51)

Ŝ =

<WRITE> <CHESS>[ ]書く 0.5 0.5
角 0.5 0.5
記す 1.0 0.0

(52)

In the F matrix, the new trimoras are associated with the meaning of <write>
without ambiguity, leading to the perfect comprehension, as displayed in the third
row of the Ŝ matrix. The other cell values in the F and Ŝ matrices are the same
as those in the same matrices without the additional word 記す (i.e., Equations
45 and 46), indicating the addition of the new word記す does not deteriorate the
comprehension process.

For the production process, however, shared meanings pose a problem. Since
the meaning of <write> is shared by different word forms, the model cannot
determine the correct word form only by the meaning of <write>. Below are the
G and Ĉ matrices, based on the C and S matrices of the toy lexicon with書く,角,
and記す.
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G =

#かく かく# #しる しるす るす#[ ]
<write> 0.5 0.5 0.5 0.5 0.5
<chess> 1.0 1.0 0.0 0.0 0.0

(53)

Ĉ =

#かく かく# #しる しるす るす#[ ]書く 0.5 0.5 0.5 0.5 0.5
角 1.0 1.0 0.0 0.0 0.0
記す 0.5 0.5 0.5 0.5 0.5

(54)

As illustrated in the G matrix above, the association weights from the meaning of
<write> are split to the trimoras ofかく (which is the pronunciation of書く and
角 both) and those ofしるす (i.e.,記す). This indeterminacy in the G matrix is
reflected in indeterminacy in the Ĉ matrix, where the word forms of書く and記
す are not fully supported by their meanings due to ambiguity created originally
by the meaning of <write>.

In summary, in the framework of DLM, different meanings of homophones can
lead to different ways of their realizations, being interacted with other words with
similar meanings. Homophones would be predicted to be identical only when they
share the exactly same meaning, which is not likely in reality. In fact, recent studies
have reported word-specific phonetic realizations (Chuang et al. published online
11 May 2024, Lu et al. published online 28 August 2024). With this in mind, we
can now turn to an explanation of semantic support. More specifically, different
meanings of homophones should be reflected in different values in predicted form
vectors (i.e., Ĉ).

2.4. Semantic support

2.4.1. Unconditional semantic support
Each value in Ĉ can conceptually be understood as a measure of how much a certain
sublexical form (e.g., a triphone) is supported by the meaning of a particular word.
For example, in (36), the model is quite certain that #kæ, kæt, and æt# should
be the components of the word form, given the meaning of cat.

Semantic support values can be considered for each sublexical form or for the
entire word. For example, in the example above, the triphone #kæ has a semantic
support value of 1.00 from the meaning of cat, as can be seen in Equation 36.
Since cat is defined to be made of #kæ, kæt, and æt# and they all receive a
semantic value of 1.00, the word cat receives a total semantic support value of
3.00. Formally, semantic support for a sublexical form and for the entire word can
be defined below as Equation (55) and (56) respectively:
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SemSup𝑖, 𝑗 = Ĉ𝑖, 𝑗 (55)

SemSup𝑖 =
∑︁
𝑘∈C

SemSup𝑖,𝑘 (56)

where 𝑖 is the index of the word, 𝑗 is the index of the sublexical form, and C
represents a set of cues (e.g., triphones) that constitutes the word 𝑖.

Semantic support, regardless whether it is for the entire word or for a particular
sublexical form, has been found to be positively correlated with duration (Saito
et al. 2023, Gahl & Baayen in press, Saito et al. under revision).

2.4.2. Conditional semantic support
Semantic support values are cell values of the predicted form matrix Ĉ. In the
original and most basic setup of DLM, a word form vector is produced at once. In
other words, all constituent sublexical forms are produced altogether, regardless of
their positions in the word. Sublexical forms can be defined, so that the word-initial
or word-final properties can be visible to the analyist, for example, by using # (e.g.,
æt#). These are simply labels for rows and columns of the matrices involved and
invisible to DLM. The order of sublexical forms is only implicitly inferred from a
set of sublexical forms at hand. For example, only one order is possible from the
set of #kæ, kæt, and æt#.

This issue of ordering sublexical forms has been addressed so far by means
of graph theory and the technique called positional learning (Baayen et al. 2018,
Heitmeier et al. 2024). According to this solution, additional weight matrices are
estimated for each position separately (e.g., a matrix for the word-initial position,
another matrix for the second-in-word position, and so on). There need to be as
many matrices as the number of ngrams in the longest word in the lexicon. If the
longest word in the lexicon has 10 ngrams, there need to be 10 matrices. Each
of these matrices represents how likely it is for each sublexical form to occur in
each intra-word position. Based on these matrices, possible strings of sublexical
forms are taken into account, which must pass a certain threshold. The threshold
essentially helps to reduce the number of candidates. After constructing all the
possible concatenations of sublexical forms, the most optimal path is determined
with help of the graph theory. Listing up of all the possible candidates and
selection of the most likely candidate with the graph theory need to be executed
for production of each word.

Although this solution is very effective (Heitmeier et al. 2024), it is not
completely free from shortcomings. First of all, it may not be very realistic from
the cognitive perspective that the length of the longest word in the lexicon needs
to be known prior to learning the positional matrices. Secondly, it may be too
restrictive to assume that all candidate forms must be listed first before one of
them is eventually selected. Such a solution would lead to better accuracy and
might therefore be preferred from an engineering perspective. However, it may not
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be very realistic to assume that the listener lists up in their head all the words such
as ant, anterior, antenna, anarchy, and so on, upon hearing the word-initial [æn-
]. These candidates can be reduced by setting a hyper-parameter of a threshold.
However, it is not clear how cognitively realistic to assume such a hyper-parameter,
although use of hyper-parameters would not be a problem from the engineering
perspective.

The issue of ordering sublexical forms can be solved without resort to graph
theory or positional learning. The current study proposes one way of solving
this issue by considering the interaction between the speaker and the listener.
The speaker does not produce word forms for themselves. They usually speak to
someone else. The speaker speaks louder in a noisy environment to make their
speech more audible to the listener. The speaker may repeat what they have said
again if they think the listener could not hear what they had said. These facts
suggest that the speaker modifies their speech in accordance with the listener’s
understanding, or more precisely, in accordance with what the speaker thinks the
listener has understood so far. This process of self-monitoring by the speaker can
be integrated in the process of producing a word form in DLM in the following
manner:

ĉ𝑖,𝑡 = s𝑡 · G𝑡 (57)

Similarly to the original production process of DLM, which was shown in
Equation (34), the modified production process (57) predicts a word form based
on a mapping between a semantic vector and the association matrix G. The only
modification in (57) is that each term has its own state at time 𝑡. ĉ𝑖,𝑡 represents
which sublexical forms are activated at time 𝑡.

s𝑡 represents a semantic vector of the target word with the speaker’s assumption
about the listener’s understanding taken into account. It is defined as a difference
vector between the target semantics s𝑖 and the speaker’s assumption about the
listener’s understanding so far, namely ŝ𝑖,𝑡−1, as in Equation (58). s𝑡 conceptually
represents what the speaker thinks they should say in order to make the listener
understand what they want them to understand.

s𝑡 = (s𝑖 − ŝ𝑖,𝑡−1) (58)

ŝ𝑖,𝑡−1 represents the speaker’s model of the listener’s understanding, based on
what the speaker has said. It is only a model of the speaker about the listener’s
understanding, because the speaker cannot know exactly what the listener really
heard and understood so far. For ease of exposition, we assume that the speaker
assumes that the listener has perceived all the sublexical forms the speaker has
provided so far correctly. Mathematically, this can be expressed as a form vector
that contains all the sublexical forms that the speaker has produced so far, with 1
in the cell values of these sublexical forms and 0 for the other sublexical forms,
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namely c𝑖,𝑡−1, multiplied by the comprehension weight matrix F, as below:

ŝ𝑖,𝑡−1 = c𝑖,𝑡−1F (59)

Equation (57) also contains the production weight matrix G at time 𝑡. G𝑡

is essentially the same as the usual association matrix G, but it is modified,
so that irrelevant sublexical forms are not produced in conjunction with the
previous sublexical form. This modification reflects physical and physiological
restrictions. Regardless of the size of sublexical forms, each one is expected
to have certain co-articulatory characteristics, which serve to concatenate the
sublexical forms implicitly (see Appendix B.1 for more details). For example, if
the current sublexical form is #æn, then the next sublexical form has to have æn
in the beginning (e.g., ænt). It is because #æn already has some coarticulatory
characteristics of the upcoming [n] (e.g., the tongue tip rising toward the offset of
[æ]). Choosing any other triphone that does not contain æn in the beginning would
represent a physiologically impossible situation where articulatory characteristics
executed and prepared for certain segments have vanished suddenly. In other words,
the speaker only needs to think about the next possible tongue positions, which are
physiologically possible. In order to reflect this reasoning, irrelevant cell values
are turned off to be 0 in the association matrix G, which is expressed in Equation
(60), where Diag(v𝑡−1) represents this process of ‘turning-off’ unnecessary cell
values.

G𝑡 = G · Diag(v𝑡−1) (60)

Diag is intended to be an operator that converts a vector into a diagonal matrix,
whose diagonal values correspond to the input vector. This operation by Diag can
also expressed as in Equation (61). In Equation (61), 1 is all-one vector of the
same size as v𝑡−1, ⊙ represents element-wise multiplication, and I is an identity
matrix of the same shape as (v⊤

𝑡−1 · 1).

Diag(v𝑡−1) = (v⊤𝑡−1 · 1) ⊙ I (61)

v𝑡−1 is a vector that has 1 only for the sublexical forms that are physiologically
possible given the last sublexical form. It is a row vector of an additional matrix
V, which lists all possible sequences of sublexical forms (Equation (62)).
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V =

#kæ #ræ #hæ kæt ôæt hæt æt#



#kæ 0 0 0 1 0 0 0
#ræ 0 0 0 0 1 0 0
#hæ 0 0 0 0 0 1 0
kæt 0 0 0 0 0 0 1
ôæt 0 0 0 0 0 0 1
hæt 0 0 0 0 0 0 1
æt# 0 0 0 0 0 0 0
𝜙 1 1 1 0 0 0 0

(62)

The rows of V are the current sublexical forms, and the columns represents the
possible next sublexical forms. So, for example, the first entry in the first column
of V, #kæ, can only be continued by kæt, which is why only kæt has a 1 in the
row of #kæ, and all other values in that row are at 0. The last row of V, i.e. 𝜙,
represents the word-initial position.

Based on this algorithm of form-production (i.e., Equation (57)), a predicted
form vector can be produced at each time step. Each predicted form vector will
represent which sublexical forms are supported to what degree by the meaning of
the target word and by what has been produced by the speaker so far. We call these
values in predicted form vectors produced with this algorithm of the incremental
production conditional semantic support, because they are semantic support
values in the sense that they are values in predicted form vectors, but they are
conditional on context (i.e., what has been produced so far).

As can be understood from Equations (57) and (58), conditional semantic
support values are determined by the certainty of sublexical forms to represent
the meaning of the target word and by syntagmatic predictability. The former is
a major property in DLM (in the production side). When certain meanings occur
unambiguously with certain cues (i.e. sublexical forms), the certainty of these cues
for expressing the meanings increases. Certainty of sublexical forms is reflected
in the associations in the G matrix. Higher certainty among sublexical forms will
appear as higher values in the G matrix, and those high values in the G will be
mapped onto high values in predicted form vectors. Since the G matrix is part
of the definition of conditional semantic support, certainty of cues is integrated
and captured in conditional semantic support. This certainty is also captured and
represented also by unconditional semantic support, which, however, does
not reflect the conditional certainty that is captured by the conditional semantic
support.

On the other hand, syntagmatic predictability is only captured by conditional
semantic support and not by unconditional semantic support. When the sublexical
forms early in the word already convey most of the meaning of the entire word, the
rest of the sublexical forms later in the word do not have to be pronounced clearly.
This can be the case, especially for a long word such as encyclopedia, for example.
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This kind of syntagmatic predictability effect occurs for conditional semantic
support because the predicted form vector at a certain time is produced based on
differences between the target semantic vector (i.e. s𝑖) and the semantic vector
of the listener’s understanding (i.e., ŝ𝑖,𝑡−1) (see Equation 58). When sublexical
forms early in the word already convey most of the meaning of the target word,
the listener’s understanding, namely ŝ𝑖,𝑡−1, should already be close enough to the
target meaning (i.e., s𝑖). In other words, the differences between ŝ𝑖,𝑡−1 and s𝑖 ,
namely s𝑡 , should already be small. s𝑡 with smaller values will, in turn, produce
smaller values in ĉ𝑖,𝑡 through its mapping with G𝑡 (i.e., Equation 57).

In summary, conditional semantic support values are determined between the
two opposing forces. They are higher, when predicted sublexical forms are well
supported by semantics. They become smaller, when certain sublexical forms
(later in the word) are not so important any more, in the sense that the meanings
they can convey are already conveyed other sublexical forms earlier in the word. In
other words, conditional semantic support values for certain sublexical forms get
smaller when those sublexical forms are predictable from other sublexical forms
earlier in the word.

This algorithm of the incremental production is explained in more details with
a concrete example in Appendix B.4.

3. METHODS

3.1. Data

The current study investigates phonetic realizations of Japanese homophones at the
mora level as well as the word level. For this purpose, durations of homophonous
words were collected from the core section of Corpus of Spontaneous Japanese
(CSJ). CSJ contains a total of about 661.6 hours of spontaneous and read-aloud
speech in Japanese, including a portion of the entire dataset that amounts to about
44 hours, for which annotations for a series of different linguistic units were
corrected by hand. In CSJ, annotations were generated first with forced-alignment
and subsequently checked manually by two phoneticians to ensure validity of the
annotations (The National Institute for Japanese Language 2006). For its reliability
of annotations, this section of CSJ was adopted for our investigation. The dataset
contained about 500,000 words from approximately 44 hours of recording of
speech in Japanese, which consisted of formal monologues of spontaneous speech
by 177 speakers, formal dialogues of spontaneous speech by 18 speakers, and
read-aloud speech of books by 6 speakers.

In Japanese, there are many homophones, compared to English or other
languages. It is not uncommon that a single pronunciation is shared by more than
two homophonous words. For example, the pronunciationこうしょう [ko:So:] is
shared by at least 54 words7. This is partially due to the relatively small inventory of

[7] They are交床,交渉,交睫,交鈔,厚相,厚賞,公傷,公娼,公相,公称,公証,咬傷,口承,口
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phonemes and its simple phonotactics. These homophonous words have different
meanings, such as書く [kakW] ‘write’ and掻く [kakW] ‘scratch’.

In the current dataset, 310,574 word tokens were involved in one of the
homophonous word types. In type counts, 20,971 word types were identified to
be involved in homophonous word types. Homophonous words were identified on
the basis of their phonetic transcriptions. Consequently, different tokens from
the same word type with different pitch-drop positions were not counted as
homophones, because they are not exactly homophones. For example, for the
word 昨日 ‘yesterday’, two different pitch contours were observed, which were
[kinoŤ:] and [kino:], where ‘Ť’ indicates a drop in pitch.

However, these numbers could be inflated by function words that were made
of only one mora. For example, the word に [ni] is extremely flexible. It can
be a locative particle similar in meanings to to, a word for two, another word
for alike, and many more. Those counts might also be inflated by the fact that
pronunciations are represented phonetically, which would separate word tokens
with phonetically different realizations. By limiting to nouns and phonological
representations, where the above-mentioned issues are expected to be minimized,
the current dataset has 108,076 noun tokens and 8,205 noun types. Of these,
approximately 8% of the noun types (653 noun types) were involved in at least
one other homophonous noun, and about 35% of the noun tokens (38,075 noun
tokens) were found to be involved in at least one other homophonous noun.

3.2. Estimation of DLM matrices

DLM requires a matrix for word forms and another matrix for word-meanings.
They are conventionally called C and S. For C, we encoded word forms in terms of
sequence of three moras. We used sequences of three moras instead of triphones,
because moras are the minimal phonological unit in Japanese that matches the
intuition of the native speakers (Port et al. 1987, Cutler & Otake 1994, Han 1994,
Kubozono 2017).

Japanese makes use of three writing systems. One of them is Chinese characters
and called Kanji. Kanji is an ideographic system, in which each character represents
a meaning, rather than sounds. The other two are phonographic systems, in which
each character represents the equivalent of one or two IPA sounds. They are called
Hiragana and Katakana, and each character in Hiragana and Katakana represents
a mora in Japanese. Most content words can be written in any of, or in mixture of,
the three writing systems8. Function words are usually written in Hiragana, and

誦,哄笑,好尚,幸勝,公勝,工匠,工商,工廠,巧匠,巧笑,康正,康尚,後章,後証,校章,洪
鐘,甲匠,紅晶,綱掌,翺翔,考証,行省,行粧,行障,行賞,鉱床,講頌,講誦,降将,高小,高
升,高声,高姓,高尚,高昇,高承,高昌,高商,高唱,高蹤, and黄鐘.

[8] Most content words are written in Kanji, loanwords and scientific names are written in katakana,
and grammatical functions are written in hiragana. But authors have a great deal of freedom to
use whatever writing system they want, most likely depending on a nuance in the meaning they
want to convey. As far as we know there has been no research on this interesting topic.
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they cannot be written in Kanji.
The CSJ corpus provides transcriptions in the usual transcription with three

writing systems mixed and also one only in Katakata. The latter is provided in
order to transcribe pronunciations in a clearer manner. Since each character in
Katakana represents a mora, sequences of three moras of each word were encoded
using the transcription in Katakana. For example, the Japanese word for ‘language’
is written as 言語 ([geNgo]) with Chinese characters. Its pronunciation is ゲン
ゴ [ge N go], where each character represents one mora (in the IPA the sounds of
each katakana is separated by a space). Using the transcription in Katakana in the
CSJ corpus, the word was defined with the following trimoras: #ゲン, ゲンゴ,
andンゴ#, where # indicates the word boundary.

For the semantic matrix S, a pre-trained model of fastText (Bojanowski et al.
2017) for Japanese was adopted (Grave et al. 2018)9, which was trained on Japanese
Wikipedia pages. Each semantic vector had 300 semantic dimensions.

These semantic vectors were based on orthographic representations. In
Japanese, the same word written in Chinese characters (i.e., Kanji) can have
different pronunciations. For example, the Japanese word for ‘Japan’ can be written
as 日本 ([nihoð]) with Chinese characters. There are two readings. It can be
either にほん [nihoð] or にっぽん [nip^poð]. Different pronunciations were
distinguished in the CSJ corpus. Consequently, different pronunciations sharing
the same orthography were assigned with the same semantic vector from the
pre-trained fastText model (Grave et al. 2018).

Based on these form and semantic matrices, the weight matrices F and G were
estimated, using end-state of learning, which analytically estimates an equilibrium
state of the association weights.

For the setup of these matrices, all words with a frequency greater than 1 in the
CSJ dataset were included. Some words found in the CSJ dataset were not a part
of the words the pre-trained fastText model was trained on. We excluded these. In
addition, all the words with only one mora were excluded. It was because most of
the one-mora words were function words such as case particles (e.g.,に [ni] ‘to’)
and also because one-mora words had to be defined in terms of only one sequence
of three moras, which made it difficult to distinguish the mora-level phenomena
from the word-level (i.e., lexical) phenomena (e.g.,に [ni] ‘to’ would be defined
only by #ニ#, in whichニ is the katakana of the hiraganaに, both pronounced as
[ni].

After these data exclusion procedures, 99,776 word tokens (data points)
remained available for the word-level analysis, consisting of 1,586 word types in
orthography and 1,200 word types in phonetic transcriptions. For the mora-level
analysis, 213,399 data points (i.e., moras) of 1,586 word types in orthography and
1,200 phonetic word types in phonetic transcriptions were available.

[9] The pre-trained model was downloaded from the following website: https://fasttext.cc/docs/en/
crawl-vectors.html
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3.3. Analysis

To test the non-linear effects of semantic support measures with other covariates
and factors, we used Generative Additive Mixed-effects Models (GAMMs) (Wood
2017). They were fitted with word duration (i.e., WordDur) and mora duration
(i.e., MoraDur) as the dependent variables for word-level analysis and for mora-
level analysis respectively. WordDur and MoraDur were distributed skewed and
therefore logarithmically transformed prior to analysis in order to approximate the
normal distribution for each of the two dependent variables.

Semantic support measures for each mora and its sum for each word are of the
most interest in the current study. Semantic support for each sublexical forms (i.e.,
bimoras) can be calculated with and without preceding contexts, namely preceding
sublexical forms. We call semantic support with context taken into account
conditional semantic support, and we call semantic support without context taken
into account unconditional semantic support. Unconditional semantic support is a
cell value in a predicted form matrix.

Conceptually, semantic support represents how well a certain sublexical form
is unambiguously supported from the meaning of the word that contains the certain
sublexical form, whether it is unconditional or conditional semantic support.
Unconditional semantic support does not take into account what sublexical forms
precede the sublexical form of interest. Conditional semantic support does take
into account how predictable the sublexical form of interest is from the other
sublexical forms preceding it. See Section 2.4.2 for more details. All the four
semantic support measures, namely uSemSup, cSemSup, uSemSupWord, and
cSemSupWord, showed a skewed distribution and were therefore log-transformed
in prior to analysis.

Speech rate affects duration. Faster speech rates are often correlated with
shorter durations (Kuehn & Moll 1976, Kelso et al. 1985, Gahl et al. 2012, Cohen
Priva 2015, Malisz et al. 2018). In the current study, speech rate was included in
the analysis (i.e., SpRate), as defined as the number of moras in an utterance
divided by the duration of the utterance. Regarding the definition of utterances in
the current study, we made use of the inter-pausal unit (IPU) available in the CSJ
corpus. Inter-pausal units are a continuous stretch of speech bound by at least 0.2
seconds. Based on this definition of utterances, the words at the utterance-initial
and utterance-final positions were marked (i.e., UttInitial and UttFinal).

In addition, word frequency was calculated, based on the phonetic transcrip-
tions available in the CSJ corpus, to control baseline (prior) probabilities of words
(i.e., Freq). Freqwas log-transformed prior to analysis. The current study aimed
to investigate the mora durations as well as word durations. In order to take into
account baseline (prior) probabilities of sublexical forms, bimora probabilities
were also calculated, and the sum of the bimora probabilities for each word was
included in the analysis (i.e., BimoraFreq). BimoraFreq was correlated with
lengths of words, because BimoraFreq was the sum of the probabilities of the
bimoras that make up the word. To normalize word length, BimoraFreq was
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divided by the word length, before being log-transformed and included in the
analysis.

Different syntactic classes have been found to show systematically different
durations (Lohmann 2018a). In order to account for these systematic differences
among syntactic classes, parts-of-speech were included as an additional factor
variable. The reference level was adjective.

To also take into account speaker differences, gender was included as a factor
variable (i.e., Gender) . In addition, speakers were included as a random effect,
as well (i.e., Speaker). The reference level of Gender is female. Birth place
and year were also considered. However, their effects were not significant and were
therefore excluded from the analysis.

With the set of variables introduced above, four GAM models were constructed
for each combination of the two dependent variables (i.e., either WordDur or
MoraDur) and the two types of semantic support measures. These four models had
the same model structure, except for their dependent variables and semantic support
measures. The structures of these four models are illustrated below, following the
syntax adopted by the mgcv package (Wood 2017) in R (R Core Team 2022):

Model 1: WordDur ∼ s(uSemSupWord, k=3) + Covariates
Model 2: WordDur ∼ s(cSemSupWord, k=3) + Covariates
Model 3: MoraDur ∼ s(uSemSupWord, k=3) + Covariates
Model 4: MoraDur ∼ s(cSemSupWord, k=3) + Covariates
Covariates: s(SpRate, k=3) + s(Freq, k=3) + s(BimoraFreq, k=3)

+ UttBgn + UttEnd + PoS + Gender + s(Speaker, bs=‘re’)

4. RESULTS

4.1. The word-level analysis

Word durations were significantly different among the members of each
homophonous pair (𝑉 = 2241903, 𝑝 < 0.001). The median difference was 0.039
seconds. In addition, unconditional and conditional semantic support values were
also found to be significantly different among the members of homophonous pairs
(𝑉 = 2241903, 𝑝 < 0.001).

The GAM model with unconditional semantic support for word duration (i.e.
Model 1) outperformed the model with conditional semantic support (i.e., Model
2) in AIC (ΔAIC = 1079.090). Therefore, the results based on Model 1 will be
reported for word duration below.

Unconditional semantic support was estimated to have a positive relationship
with word duration (Figure 1). The relationship was estimated to be almost linear.
The estimates of the model are summarized in Table 2.

Faster speech rate was associated with shorter duration (Figure 2). Word
frequency was correlated with shorter duration, but bimora frequency was
correlated with longer duration. However, word frequency and bimora frequency
were correlated to each other (𝑟 = 0.695, 𝑝 < 0.001), and therefore, their estimated
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effects will not be interpreted or discussed.

Table 2. The summary of the model with unconditional semantic support (Model
1) for the word duration data.

(A. Parametric) 𝛽 SE 𝑡 𝑝

(Intercept) -1.366 0.011 -125.593 <0.001
UttBgn=TRUE -0.045 0.004 -10.345 <0.001
UttEnd=TRUE 0.410 0.004 105.348 <0.001
POS=adnominal -0.272 0.009 -28.750 <0.001
POS=adverb 0.044 0.009 4.930 <0.001
POS=auxverb 0.041 0.008 5.103 <0.001
POS=conjunction 0.088 0.016 5.643 <0.001
POS=determiner -0.155 0.041 -3.758 <0.001
POS=english -0.209 0.040 -5.249 <0.001
POS=interjection -0.376 0.028 -13.632 <0.001
POS=noun 0.083 0.008 10.865 <0.001
POS=particle 0.141 0.009 15.643 <0.001
POS=prefix -0.112 0.013 -8.837 <0.001
POS=pronoun 0.025 0.010 2.606 0.009
POS=suffix -0.141 0.008 -16.703 <0.001
POS=verb -0.226 0.008 -29.980 <0.001
Gender=male -0.041 0.010 -4.209 <0.001

(B. Smooth) edf Ref.df 𝐹 𝑝

s(SpRate) 1.814 1.965 5888.294 <0.001
s(Freq) 1.906 1.991 2067.443 <0.001
s(BimoraFreq) 1.995 2.000 261.796 <0.001
s(Speaker) 125.726 135.000 33.584 <0.001
s(uSemSupWord) 1.001 1.001 1342.198 <0.001
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Figure 1. Estimated partial effects of unconditional semantic support for word on
word duration.

Figure 2. Estimated partial effects of speech rate on word duration.

4.2. The mora-level analysis

Mora durations were also found to be significantly different among the members
of each group of homophonous words with the median difference 0.018 seconds
(𝑉 = 2241903, 𝑝 < 0.001). These differences were echoed by unconditional and
conditional semantic support as well with the median difference being 0.017
(𝑉 = 2239786, 𝑝 < 0.001).

The mora duration model with conditional semantic support (i.e., Model 4)
outperformed the model with unconditional semantic support (i.e., Model 3) in
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AIC (ΔAIC = 203.691). Therefore, the model with conditional semantic support
will be reported below for mora duration. Estimates for the model with conditional
semantic support are summarized in Table 3

Table 3. The summary of the model with conditional semantic support (Model 4)
for the mora duration data.

(A. Parametric) 𝛽 SE 𝑡 𝑝

(Intercept) -2.285 0.010 -220.894 <0.001
UttBgn=TRUE -0.056 0.004 -13.621 <0.001
UttEnd=TRUE 0.409 0.004 105.422 <0.001
POS=adnominal -0.189 0.009 -20.573 <0.001
POS=adverb 0.058 0.009 6.793 <0.001
POS=auxverb 0.172 0.008 22.255 <0.001
POS=conjunction 0.248 0.016 15.032 <0.001
POS=determiner -0.087 0.041 -2.133 0.033
POS=english -0.063 0.040 -1.566 0.117
POS=interjection -0.130 0.028 -4.685 <0.001
POS=noun 0.103 0.007 14.202 <0.001
POS=particle 0.221 0.009 24.947 <0.001
POS=prefix 0.108 0.013 8.608 <0.001
POS=pronoun 0.022 0.009 2.387 0.017
POS=suffix 0.044 0.008 5.446 <0.001
POS=verb -0.192 0.007 -26.464 <0.001
Gender=male -0.036 0.009 -4.064 <0.001

(B. Smooth) edf Ref.df 𝐹 𝑝

s(SpRate) 1.899 1.989 6835.057 <0.001
s(Freq) 1.999 2.000 398.516 <0.001
s(BimoraFreq) 1.999 2.000 2180.071 <0.001
s(Speaker) 123.952 135.000 142.704 <0.001
s(cSemSupMora) 1.987 2.000 660.770 <0.001

Effects of conditional semantic support on mora duration were estimated to be
non-linear with a clear positive relationship with mora duration for where most data
points are concentrated. The distribution of the data points is illustrated in Figure
3 as small vertical black lines at the bottom of the figure. The non-linearity of the
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estimated effects was mainly due to the sparseness of the data for smaller values
of conditional semantic support for mora, for which there are fewer data points.
The data sparsity made the estimation unreliable, indicated by wider confidence
intervals.

Figure 3. Estimated partial effects of conditional semantic support for mora on
mora duration.

Speech rate had a negative correlation with mora duration. Faster speech rates
were associated with shorter mora duration (Figure 4).

Figure 4. Estimated partial effects of speech rate on mora duration.

For low to mid word frequency values mora duration decreased. From mid
frequency to high frequency mora duration increased. The opposite patterns were
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observed for bimora frequency. Mora duration was longest for the mid bimora
frequency and the shortest for high bimora frequency. However, these two variables
were correlated with each other (𝑟 = 0.648, 𝑝 < 0.001), and therefore they will
not be interpreted any further.

5. DISCUSSION

We investigated the effects of semantics on the duration of homophones in
Japanese, a language where duration is phonemic (Aim 1). In addition, we
investigated mora duration as well as word duration in order to investigate whether
semantic effects were tied to the lexicality of words (Aim 2). Systematic differences
in word duration and mora duration as an effect of semantics are predicted by
DLM (Baayen et al. 2019) while no such effects are predicted by traditional
modular-based feed-forward speech production models (e.g., Levelt et al. 1999),
as summarized in Table 1.

Based on a spontaneous speech corpus of Japanese (CSJ), homophone
durations were found to be systematically longer when they were supported better
by the meaning of the word. This observation indicates a clear relationship between
sounds and meanings. Homophones systematically differ in duration as a function
of semantics even in a language in which vowel duration is phonemic (see Aim 1
in Section 1). Furthermore, durational differences due to semantics are likely to
occur at the sublexical level, indicated by a significant relationship found between
mora duration and conditional semantic support in the current study (see Aim 2 in
Section 1). With respect to the hypotheses (Table 1), our findings–duration effects
at the word and mora level–are explained by DLM (Baayen et al. 2019).

In the current study, word duration was better predicted by the measure of
semantic support without contextual information (i.e., unconditional semantic
support), while mora duration was better predicted by the measure of semantic
support with contextual information (i.e., conditional semantic support). These
distinct effects of unconditional and conditional semantic support suggest that
these two measures capture different aspects of durational realizations in Japanese.
Differences between conditional and unconditional semantic support usually
appear more clearly toward the end of a word. This is because more context has
become available toward the end of the word. With contextual information being
accumulated toward the end of a word, the sublexical forms toward the end of the
word become more predictable, thus smaller conditional semantic support values.
In contrast, unconditional semantic support values do not necessarily decrease
from the beginning to the end of a word. Better performance of conditional
semantic support for predicting mora duration suggests that this decreasing trend
in duration from the beginning to the end of each word was captured well by
conditional semantic support. If word duration is only the sum of mora duration,
conditional semantic support should win over unconditional semantic support to
predict word duration as well. The better performance of unconditional semantic
support for word duration observed in the current study, therefore, suggests that
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each word has its own target duration. Word-specific durational targets have, in
fact, been suggested by the literature regarding the mora-timing system in Japanese
(Port et al. 1987, Han 1994). According to the literature, segment duration can
be stretched or compressed within and across moras to achieve certain word-
durational targets in Japanese. In the current study, a post-hoc simulation confirmed
better performance of unconditional and conditional semantic support for word
and mora duration respectively when each word has its own durational target in
addition to decreasing mora durations (Appendix C).

Regardless of the choice of word- and mora-durations, the relationship between
duration and semantic support was consistently positive. Semantic support reflects
(un)certainty among forms and meanings (see section 2.4 for more detail) with
greater semantic support associated with higher certainty in forms based on
semantics. Accordingly, the positive relationship found in the current study
between semantic support and duration suggests a positive relationship between
certainty and duration. When the speaker is more certain about the pronunciation,
it results in a more careful and precise pronunciation (Kuperman et al. 2007,
Cohen 2014, Tomaschek et al. 2019, Tucker et al. published online 20 March
2019, Tomaschek et al. 2021).

In addition, the current observations are in line with, and therefore add to,
a growing number of recent studies that have documented systematic relations
between sounds and meanings (Baayen et al. 2019, Chuang et al. 2020, Gahl
& Baayen in press, Saito et al. under revision). The direct relationship between
sounds and meanings also dovetails well with the literature on sound symbolism
and iconicity (Dingemanse et al. 2016, Dingemanse & Thompson 2020). Non-
arbitrary relationships between sounds and meanings were reported as early as in
the late 1920s both in linguistics and psychology (Fischer 1922), and supporting
evidence was repeatedly observed since then across languages (Ćwiek et al. 2022).
Nevertheless, phenomena such as sound symbolism have only recently started
being integrated into linguistic theory, due to the deeply entrenched assumption
about the arbitrariness of the relationship between sound and meaning (de Saussure
1916).

In DLM, certain sublexical forms can be more strongly supported by semantics,
when certain sublexical forms occur more unambiguously with certain meanings.
For example, the word-initial prz (e.g., Przwalskihorse) does not occur in so
many words in English, and all of the English words with the word-initial prz are
associated with the meaning of <Przwalskihorse>. Consequently, DLM predicts,
the constant co-occurrence of prz and <Przwalskihorse> makes the sublexical
word form prz strongly supported by the meaning of <Przwalskihorse>. The
degree of semantic support is continuous, as it is real-valued, not binary. It
implies that a certain sublexical form can be associated with a certain meaning
only partially. DLM allows for an intermediate association between sounds and
meanings, which might be called phonaesthemes. The word-initial gl- often
appears in the words with the meanings related to light (e.g., glow, gleam, glisten),
but not necessarily (e.g., glitch). DLM predicts a stronger relation between gl- and
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the meaning of light if they occur together a substantial amount of times, allowing
for the possibility that the same sublexical form is used as a part of the words
that do not mean anything about light. Contribution of each sublexical form to a
certain meaning is always partial.

In summary, the current study indicates that phonetic realizations can be
determined by semantics at least partially (Baayen et al. 2019, Chuang et al.
2021, published online 11 May 2024, Lu et al. published online 28 August
2024), challenging traditional views of speech production that limit such effects
of semantics on phonetic realizations (e.g., Levelt et al. 1999). Especially, degrees
of certainty in forms based on meanings, which we quantified as semantic
support, were found in the current study to lead to clearer and more careful
speech (Kuperman et al. 2007, Cohen 2014, Tomaschek et al. 2019, Tucker
et al. published online 20 March 2019, Tomaschek et al. 2021). By providing
evidence for the continuous nature of form-semantic relations, the current study
opens up quite a few possibilities to investigate relationships between sounds and
forms such as sound symbolism, iconicity, and phonaesthemes (Dingemanse et al.
2016, Dingemanse & Thompson 2020). Once accepting partial contributions of
meanings, intermediate components between sounds and meanings may not be
absolutely necessary.

COMPETING INTERESTS

The authors declare none.

SUPPLEMENTARY MATERIALS

The data and scripts of the present study can be found at https://osf.io/mcr9p/.

REFERENCES

Baayen, R. H., Yu-Ying Chuang & James P. Blevins. 2018. Inflectional morphology with linear
mappings. The Mental Lexicon 13(2). 230–268.

Baayen, R. H., P. Milin, D. Filipović Durdević, P. Hendrix & M. Marelli. 2011. An amorphous model
for morphological processing in visual comprehension based on naive discriminative learning.
Psychological Review 118(3). 438–481.

Baayen, R. H., Richard Piepenbrock & Leon Gulikers. 1996. Celex2. Linguistic Data Consortium,
Philadelphia .

Baayen, R Harald, Yu-Ying Chuang, Elnaz Shafaei-Bajestan & James P Blevins. 2019. The
discriminative lexicon: A unified computational model for the lexicon and lexical processing
in comprehension and production grounded not in (de) composition but in linear discriminative
learning. Complexity 2019.

Ben Hedia, Sonia & Ingo Plag. 2017. Gemination and degemination in english prefixation: Phonetic
evidence for morphological organization. Journal of Phonetics 62. 34–49.

Bojanowski, Piotr, Edouard Grave, Armand Joulin & Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics 5. 135–
146.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,



SAITO, VAN DE VIJVER 34

Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever
& Dario Amodei. 2020. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan & H. Lin (eds.), Proceedings of the 34th International Conference on
Neural Information Processing Systems (NIPS’20), vol. 33, 1877–1901. Red Hook, NY, USA:
Curran Associates, Inc.

Cheng, Hei Yan, Bruce E. Murdoch, Justin V. Goozée & Dion Scott. 2007. Electropalatographic
assessment of tongue-to-palate contact patterns and variability in children, adolescents, and adults.
Journal of Speech, Language, and Hearing Research 50(2). 375–392.

Chuang, Yu-Ying, Melanie J. Bell, Yu-Hsiang Tseng & R. Harald Baayen. published online 11 May
2024. Word-specific tonal realizations in Mandarin. Published online on arXiv, 11 May 2024.
https://arxiv.org/abs/2405.07006.

Chuang, Yu-Ying, Marie Lenka Vollmer, Elnaz Shafaei-Bajestan, Susanne Gahl, Peter Hendrix &
R. Harald Baayen. 2020. The processing of pseudoword form and meaning in production and
comprehension: A computational modeling approach using linear discriminative learning. Behavior
Research Methods 1–32.

Chuang, Yu-Ying, Marie Lenka Vollmer, Elnaz Shafaei-Bajestan, Susanne Gahl, Peter Hendrix &
R. Harald Baayen. 2021. The processing of pseudoword form and meaning in production and
comprehension: A computational modeling approach using linear discriminative learning. Behavior
Research Methods 53. 945–976. doi:10.3758/s13428-020-01356-w.

Cohen, Clara. 2014. Probabilistic reduction and probabilistic enhancement. Morphology 24(4). 291–
323.

Cohen Priva, Uriel. 2015. Informativity affects consonant duration and deletion rates. Laboratory
Phonology 6(2). 243–278. doi:10.1515/lp-2015-0008.

Cutler, Anne & Takashi Otake. 1994. Mora or phoneme? Further evidence for language-specific
listening. Journal of Memory and Language 33(6). 824–844. doi:https://doi.org/10.1006/jmla.
1994.1039. https://www.sciencedirect.com/science/article/pii/S0749596X84710394.

Ćwiek, Aleksandra, Susanne Fuchs, Christoph Draxler, Eva Liina Asu, Dan Dediu, Katri Hiovain,
Shigeto Kawahara, Sofia Koutalidis, Manfred Krifka, Pärtel Lippus et al. 2022. The bouba/kiki
effect is robust across cultures and writing systems. Philosophical Transactions of the Royal Society
B 377(1841). 20200390.

Davidson, Lisa. 2005. Addressing phonological questions with ultrasound. Clinical Linguistics and
Phonetics 19(6-7). 619–633.

Dell, Gary S. 1986. A spreading-activation theory of retrieval in sentence production. Psychological
Review 93(3). 283–321. doi:10.1037//0033-295x.93.3.283.

Dell, Gary S., Nadine Martin & Myrna F. Schwartz. 2007. A case-series test of the interactive two-step
model of lexical access: Predicting word repetition from picture naming. Journal of Memory and
Language 56(4). 490–520. doi:10.1016/j.jml.2006.05.007.

Dell, Gary S., Myrna F. Schwartz, Nadine Martin, Eleanor M. Saffran & Deborah A. Gagnon. 1997.
Lexical access in aphasic and nonaphasic speakers. Psychological Review 104(4). 801–838.

Dingemanse, Mark, Will Schuerman, Eva Reinisch, Sylvia Tufvesson & Holger Mitterer. 2016. What
sound symbolism can and cannot do: Testing the iconicity of ideophones from five languages.
Language 92(2). e117–e133. doi:10.1353/lan.2016.0034.

Dingemanse, Mark & Bill Thompson. 2020. Playful iconicity: structural markedness underlies the
relation between funniness and iconicity. Language and Cognition 12(1). 203–224. doi:10.1017/
langcog.2019.49.

Fischer, Siegfried. 1922. Über das Entstehen und Verstehen von Namen. Archiv für deutsche Gestalt
Psychologie 42. 335–368.

Gahl, Susanne. 2008. Time and thyme are not homophones: The effect of lemma frequency on word
durations in spontaneous speech. Language 84(3). 474–496.

Gahl, Susanne & R. Harald Baayen. in press. Time and thyme again: Connecting spoken word duration
to models of the mental lexicon. Language. Published online on the website of the institution of the
second author, 2 July 2024. https://quantling.org/~hbaayen/publications/GahlBaayen2024.pdf.

Gahl, Susanne, Yao Yao & Keith Johnson. 2012. Why reduce? Phonological neighborhood density
and phonetic reduction in spontaneous speech. Journal of Memory and Language 66(4). 789–806.
doi:10.1016/j.jml.2011.11.006. http://dx.doi.org/10.1016/j.jml.2011.11.006.

Grave, Edouard, Piotr Bojanowski, Prakhar Gupta, Armand Joulin & Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018), .



JAPANESE HOMOPHONE DURATION 35

Han, Mieko S. 1994. Acoustic manifestations of mora timing in Japanese. The Journal of the Acoustical
Society of America 96(1). 73–82. doi:10.1121/1.410376. https://doi.org/10.1121/1.410376.

Hay, Jennifer. 2007. The phonetics of ’un’. In Judith Munat (ed.), Lexical creativity, texts and contexts,
39–57. Amsterdam: John Benjamins.

Heitmeier, Maria, Yu-Ying Chuang & R. Harald Baayen. 2024. The Discriminative Lexicon: Theory
and implementation in the Julia package JudiLing. to appear with Cambridge University Press.

Howson, Phil J. & Melissa A. Redford. 2019. Liquid coarticulation in child and adult speech.
Proceedings of the 19th International Congress of Phonetic Sciences .

Kelso, J. A. S., Eric Vatikiotis-Bateson, Elliot L. Saltzman & Bruce Kay. 1985. A qualitative dynamic
analysis of reiterant speech production: Phase portraits, kinematics, and dynamic modeling. Journal
of the Acoustical Society of America 77(1). 266–280. doi:10.1121/1.392268.

Kubozono, Haruo. 2017. Mora and syllable. In Natsuko Tsujimura (ed.), The handbook of Japanese
linguistics, chap. 2, 31–61. John Wiley & Sons, Ltd. doi:https://doi.org/10.1002/9781405166225.
ch2. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405166225.ch2.

Kuehn, David P. & Kenneth L. Moll. 1976. A cineradiographic study of VC and CV articulatory
velocities. Journal of Phonetics 4(4). 303–320. doi:10.1016/s0095-4470(19)31257-4.

Kuperman, V., M. Pluymaekers, M. Ernestus & R. H. Baayen. 2007. Morphological predictability and
acoustic duration of interfixes in Dutch compounds. Journal of the Acoustical Society of America
121(4). 2261–2271.

Landauer, Thomas K & Susan T Dumais. 1997. A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological Review
104(2). 211.

Levelt, Willem J. M., Ardi Roelofs & Antje S. Meyer. 1999. A theory of lexical access in speech
production. Behavioral and Brain Sciences 22(1). 1–38.

Levelt, Willem J. M. & Linda Wheeldon. 1994. Do speakers have access to a mental syllabary?
Cognition 50. 239–269.

Li, Vivian G., Sejin Oh, Garima Chopra, Joshua Celli & Jason A. Shaw. 2020. Articulatory correlates of
morpheme boundaries: Preliminary evidence from intra- and inter-gestural timing in the articulation
of the English past tense. Proceedings of ISSP 2020 - 12th International Seminar on Speech
Production .

Lohmann, Arne. 2018a. Cut (N) and cut (V) are not homophones: Lemma frequency affects the
duration of noun–verb conversion pairs. Journal of Linguistics 54(4). 753–777. doi:10.1017/
s0022226717000378.

Lohmann, Arne. 2018b. Time and thyme are not homophones: A closer look at Gahl’s work on the
lemma-frequency effect, including a reanalysis. Language 94(2). e180–e190. doi:10.1353/lan.2018.
0032.

Lu, Yuxin, Yu-Ying Chuang & R. Harald Baayen. published online 28 August 2024. Form and meaning
co-determine the realization of tone in Taiwan Mandarin spontaneous speech: The case of Tone 3
sandhi. Published online on arXiv, 28 August 2024. https://arxiv.org/abs/2408.15747.

Malisz, Zofia, Erika Brandt, Bernd Möbius, Yoon Mi Oh & Bistra Andreeva. 2018. Dimensions
of segmental variability: Interaction of prosody and surprisal in six languages. Frontiers in
Communication 3(25). doi:10.3389/fcomm.2018.00025.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado & Jeffrey Dean. 2013. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani & K. Q. Weinberger (eds.), Advances in neural information processing
systems, vol. 26, 3111–3119. Curran Associates, Inc.

Nittrouer, Susan, Michael Studdert-Kennedy & Richard S. McGowan. 1989. The emergence of phonetic
segments: Evidence from the spectral structure of fricative-vowel syllables spoken by children and
adults. Journal of Speech and Hearing Research 32(1). 120–132.

Noiray, Aude, Martijn Wieling, Dzhuma Abakarova, Elina Rubertus & Mark Tiede. 2019. Back from
the future: Non-linear anticipation in adults and children’s speech. Journal of Speech, Language
and Hearing Research 62(8S). 3033–3054.

Öhman, S. E. G. 1966. Coarticulation in VCV utterances: Spectrographic measurements. The Journal
of the Acoustical Society of America 39. 151–168. doi:10.1121/1.1909864.

Plag, Ingo & Sonia Ben Hedia. 2018. The phonetics of newly derived words: Testing the effect of
morphological segmentability on affix duration. In Sabine Arndt-Lappe, Angelika Braun, Claudine
Moulin & Esme Winter-Froemel (eds.), Expanding the lexicon, 93–116. Berlin & Boston: De Gruyter
Mouton.



SAITO, VAN DE VIJVER 36

Plag, Ingo, Julia Homann & Gero Kunter. 2017. Homophony and morphology: The acoustics of
word-final s in english. Journal of Linguistics 53(1). 181–216.

Port, Robert F., Jonathan Dalby & Michael O’Dell. 1987. Evidence for mora timing in Japanese.
The Journal of the Acoustical Society of America 81(5). 1574–1585. doi:10.1121/1.394510. https:
//doi.org/10.1121/1.394510.

R Core Team. 2022. R: A language and environment for statistical computing. https://www.r-project.
org/.

Repp, Bruno H. & Virginia A. Mann. 1982. Fricative–stop coarticulation: Acoustic and perceptual
evidence. The Journal of the Acoustical Society of America 71(6). 1562–1567.

Saito, Motoki, Fabian Tomaschek & R. Harald Baayen. 2021. Relative functional load determines
co-articulatory movements of the tongue tip. Proceedings of the 12th International Seminar on
Speech Production (ISSP 2020) 210–213.

Saito, Motoki, Fabian Tomaschek & R. Harald Baayen. 2023. Articulatory effects of frequency
modulated by semantics. In Marcel Schlechtweg (ed.), Phonology and phonetics, De Gruyter.

Saito, Motoki, Fabian Tomaschek & R. Harald Baayen. under revision. Interaction of frequency and
inflectional status: An approach from discriminative learning. Language and Speech .

Saito, Motoki, Fabian Tomaschek, Ching-Chu Sun & R Harald Baayen. 2024. Articulatory effects of
frequency modulated by semantics. In Marcel Schlechtweg (ed.), Interfaces of phonetics, vol. 38,
125. Walter de Gruyter GmbH & Co KG.

de Saussure, Ferdinand. 1916. Course in general linguistics. McGraw-Hill.
Schmitz, Dominic, Dinah Baer-Henney & Ingo Plag. 2021a. The duration of word-final /s/ differs across

morphological categories in English: Evidence from pseudowords. Phonetica 78(5-6). 571–616.
doi:10.1515/phon-2021-2013.

Schmitz, Dominic, Ingo Plag, Dinah Baer-Henney & Simon David Stein. 2021b. Durational Differences
of Word-Final /s/ Emerge From the Lexicon: Modelling Morpho-Phonetic Effects in Pseudowords
With Linear Discriminative Learning. Frontiers in Psychology 12(680889). 1–20. doi:10.3389/
fpsyg.2021.680889.

Seyfarth, Scott, Marc Garellek, Gwendolyn Gillingham, Farrell Ackerman & Robert Malouf.
2018. Acoustic differences in morphologically-distinct homophones. Language, Cognition and
Neuroscience 33(1). 32–49.

Shafaei-Bajestan, Elnaz, Masoumeh Moradipour-Tari, Peter Uhrig & R. H. Baayen. 2021. Ldl-auris:
A computational model, grounded in error-driven learning, for the comprehension of single spoken
words. Language, Cognition and Neuroscience 1–28.

Smith, Rachel, Rachel Baker & Sarah Hawkins. 2012. Phonetic detail that distinguishes prefixed from
pseudo-prefixed words. Journal of Phonetics 40(5). 689–705.

Song, Jae Yung, Katherine Demuth, Stefanie Shattuck-Hufnagel & Lucie Ménard. 2013. The effects of
coarticulation and morphological complexity on the production of English coda clusters: Acoustic
and articulatory evidence from 2-year-olds and adults using ultrasound. Journal of Phonetics 41(3-4).
281–295.

Sproat, Richard & Osamu Fujimura. 1993. Allophonic variation in English /l/ and its implications
for phonetic implementation. Journal of Phonetics 21(3). 291–311. doi:10.1016/s0095-4470(19)
31340-3.

Strycharczuk, Patrycja & J. M. Scobbie. 2016. Gradual or abrupt? the phonetic path to
morphologisation. Journal of Phonetics 59. 76–91.

Sugahara, Mariko & Alice Turk. 2009. Durational correlates of English sublexical constituent structure.
Phonology 26(3). 477–524.

The National Institute for Japanese Language. 2006. Construction of the corpus of spontaneous
japanese, vol. 124 The National Language Research Institute Research Report. Tokyo, Japan: The
National Institute for Japanese Language.

Tomaschek, Fabian, Ingo Plag, Mirjam Ernestus & R. Harald Baayen. 2019. Phonetic effects of
morphology and context: Modeling the duration of word-final S in English with naïve discriminative
learning. Journal of Linguistics 1–39. doi:10.1017/S0022226719000203.

Tomaschek, Fabian, Benjamin V. Tucker, Michael Ramscar & R. H. Baayen. 2021. Paradigmatic
enhancement of stem vowels in regular english inflected verb forms. Morphology 31(2). 171–199.

Tucker, Benjamin V., Michelle Sims & R. Harald Baayen. published online 20 March 2019. Opposing
forces on acoustic duration. doi:10.31234/osf.io/jc97w. Published online on PsyArXiv, 20 March
2019.

Walsh, Thomas & Frank Parker. 1983. The duration of morphemic and non-morphemic /s/ in English.
Journal of Phonetics 11(2). 201–206.



JAPANESE HOMOPHONE DURATION 37

Wood, Simon N. 2017. Generalized additive models: An introduction with R. Boca Raton, Florida,
USA: CRC Press 2nd edn.

Zharkova, Natalia, Nigel Hewlett & William J. Hardcastle. 2012. An ultrasound study of lingual
coarticulation in /sV/ syllables produced by adults and typically developing children. Journal of the
International Phonetic Association 42(2). 193–208.

Zimmermann, Julia. 2016. Morphological status and acoustic realization: Findings from New Zealand
English. In Proceedings of the sixteenth australasian international conference on speech science and
technology (sst-2016) December, 201–204. Canberra: Australasian Speech Science and Technology
Association (ASSTA).

Zuraw, Kie, Isabelle Lin, Meng Yang & Sharon Peperkamp. 2021. Competition between whole-
word and decomposed representations of English prefixed words. Morphology 31(2). 201–237.
doi:10.1007/s11525-020-09354-6.

A. JAPANESE PHONOLOGY

Japanese language is based on moras, rather than syllables. For example,王 /ou/
([o:]) ‘king’ is about twice as long as 尾 [o] ‘tail’, because the former consists
of one mora while the latter consists of two moras. For another example,勝った
/katta/ ([kat^ta]/[kat:a]) ‘won’ is about 1.5 times as long as 肩 /kata/ ([kata])
‘shoulder’ with one more mora.

In addition, in Japanese, words are also distinguished by the position of a pitch
accent. Each word has its own pitch accent position, where the pitch drops suddenly.
For example,箸 /haŤsi/ ([haŤCi]) and橋 /hasiŤ/ ([haCiŤ]) are distinguished by the
different pitches of the second mora. In the examples, the position of the pitch drop
is marked by the symbol of the downstep ‘Ť’. The pitch drop after the final mora of
the word (e.g.,橋 /hasiŤ/) represents a lower pitch of the next mora after the word.
For example, when the word 橋 /hasiŤ/ ‘bridge’ is marked by the focus particle
that can mark the syntactic subject, the particle will receive a lower pitch, namely
橋が /hasiŤga/ ‘bridge (nom)’. Some words do not have a pitch drop. For those
words, the next mora after the word is realized with the same pitch as the last mora
of the word. For example,端 /hasi/ ([haCi]) ‘edge’ does not have a pitch drop, and
consequently it is said to have the same pitch contour as 橋 /hasiŤ/ ‘bridge’ by
itself. However, the focus particleが /ga/ of端が /hasiga/ will be higher in pitch
than the same particleが /ga/ of橋が /hasiŤga/, due to the absence of a pitch drop
for端 /hasi/.

Japanese has approximately 14 consonants (depending on different ways of
counts) and 5 vowels from the phonological perspective. Phonotactics in Japanese
is relatively simple. No consonant cluster is allowed, at least phonemically, and
no coda consonant is allowed, either, except for nasals. These constraints result in
very simple phonotactics, which allows mostly open syllables with a simple onset,
and codas that can only contain nasals or the first part of a geminate.

B. DLM

The current study focused on triphone-based representations of word forms. These
choices are, however, not requirements or any inherent limitation of DLM. In DLM,
form vectors can be defined in many ways, as long as they are represented in the
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form of vectors (i.e., a sequence of numbers).

B.1. Triphones

In DLM, form vectors can be defined by any size of n-grams, not only by
trigrams/triphones. The current study adopted triphones rather than other sizes
of n-grams for better interpretability. A triphone can be understood as a contextual
representation (informally, an allophone) of a certain single segment, rather than
a string of three segments. For example, [bæb] and [dæd] differ in phonetic
realizations of tongue tip movements. For [bæb], the tongue can stay low for [æ],
because [b] does not require any tongue tip movement. In contrast, [d] requires
that the tongue tip is raised for its articulation. When [æ] is sandwiched between
[d], tongue tip positions are expected to be higher at the onset and the offset of [æ],
compared to the onset and the offset of [æ] but sandwiched between [b]. These
different realizations are due to carryover in anticipatory coarticulations (Öhman
1966, Repp & Mann 1982, Nittrouer et al. 1989, Davidson 2005, Cheng et al.
2007, Zharkova et al. 2012, Song et al. 2013, Howson & Redford 2019, Noiray
et al. 2019).

B.2. Phonetic representations

DLM does not require to use any particular type of linguistic representations.
Word forms can be represented in terms of orthographic letters as well as phonetic
segments. Lower levels of representations can also be utilized such as acoustic
properties (e.g., spectrogram) (Shafaei-Bajestan et al. 2021) or tongue positions
(Saito et al. 2024).

The current study made use of phonetic segments as the basic descriptive unit
for word forms, over orthographic representations. This was because the current
study involves phonetic realizations. Acoustic representations were not adopted
to enable simpler word-type-based modeling. Acoustic realizations are always
different from one token to another. While it is absolutely the fact of everyday-
use of language, the token-based modeling would require an incremental way of
estimating association weights, which would be computationally very heavy. In
addition, a sufficient quantity and quality of acoustic data would be required to
reliably estimate association weights. Due to consideration of these issues, the
use of simple triphones was adopted in the current study. Compared to acoustics,
phonetic segments already abstract away non-linguistic variability such as pitch
differences between male and female speakers, and therefore the same word can
be informed properly as the same word to DLM.

B.3. Word as the basic unit

DLM requires that word forms and word-meanings are defined as vectors.
Depending on theoretical interests and objectives, any size of linguistic units can
be used, which includes syllables, morphemes, words, phrases, and even sentences,
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for example (Baayen et al. 2019). The requirement also suggests that the basic unit
does not have to be based on any linguistic unit. It can be a fixed time window
such as 100 ms, or certain frequent tokens as utilized in recent GPT algorithms
(Brown et al. 2020), for example.

The current study focused on word-level units, nevertheless. This was mainly
due to make the study feasible. In order to estimate associations between forms and
meanings, they need to be defined in terms of vectors. While defining forms for
different sizes of linguistic units than words would be a manageable task, defining
semantics for different sizes of linguistic units would not be straightforward and it
would be an empirical question by itself how they should be defined. In contrast,
there are quite a few algorithms available to estimate meanings of words such as
word2vec (Mikolov et al. 2013) and fastText (Bojanowski et al. 2017). Therefore,
it was preferred for the current study to derive word-meanings from a well-known
algorithm reliably.

B.4. Example of incremental production

Suppose there are only two words in the example toy lexicon, namely pays [peI
“
z]

and paid [peI
“
d]. Using triphones, the form matrix C for this toy lexicon can be

set-up as in Equation (63), where 1 represents the diphthong [eI
“
] (Baayen et al.

1996).

C =

#p1 p1z 1z# p1d 1d#[ ]
pays 1 1 1 0 0
paid 1 0 0 1 1

(63)

In addition, suppose that the meanings of the two words are defined in terms of
the meanings of their stems and suffixes, as in Equation 64.

S =

<pay> <-s> <-ed>[ ]
pays 1 1 0
paid 1 0 1

(64)

From these two matrices, the comprehension and production weight matrices F
and G will be estimated as in Equations (65) and (66).
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F =

<pay> <-s> <-ed>


#p1 0.500 0.250 0.250
p1z 0.250 0.375 −0.125
1z# 0.250 0.375 −0.125
p1d 0.250 −0.125 0.375
1d# 0.250 −0.125 0.375

(65)

G =

#p1 p1z 1z# p1d 1d#[ ]<pay> 0.667 0.333 0.333 0.333 0.333
<-s> 0.333 0.667 0.667 −0.333 −0.333

<-ed> 0.333 −0.333 −0.333 0.667 0.667
(66)

Suppose the speaker intends to produce paid. In other words, the speaker
intends to create the meaning (i.e., semantic vector) of paid in the listener’s head.
The ‘goal’ semantic vector is the second row of Equation (64), which is repeated
below for clarity as a single vector (Equation 67).

spaid =

<pay> <-s> <-ed>[ ]
paid 1 0 1 (67)

The speaker knows that they have not produced anything yet, and therefore the
listener has not received any cues (i.e., sublexical forms). The set of sublexical
forms the speaker has provided so far is therefore a zero vector as in Equation (68).

cpaid,𝑡=0 =

#p1 p1z 1z# p1d 1d#[ ]
0 0 0 0 0 (68)

Given the set of sublexical forms the speaker has produced (i.e., Equation (68),
the speaker infers what the listener has understood so far. The listener should not
have understood anything yet, because the speaker has said nothing yet (Equation
(69)).

ŝpaid,𝑡=0 = cpaid,𝑡=0 · F =

<pay> <-s> <-ed>[ ]
0 0 0 (69)

Note that the comprehension weight matrix F is the comprehension side of the
linguistic knowledge possessed by the speaker, not by the listener. This is because
all these processes happen in the speaker’s head.
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Subsequently, the speaker decides what to say, based on what they think the
listener has understood so far, namely Equation (69). More specifically, the speaker
considers what meanings should be emphasized or clearly expressed to the listener
at the moment in order to create the goal semantic vector (i.e., the meaning of
paid) in the listener’s head. This reasoning can be expressed as the difference
vector between the goal semantic vector (i.e., spaid) and the meanings/semantic
vector assumed to be achieved in the listener’s head (i.e., ŝpaid,𝑡=0), as expressed in
Equation (70).

s𝑡=1 = (spaid − ŝpaid,𝑡=0) =

=

<pay> <-s> <-ed>[ ]
1 0 1 −

<pay> <-s> <-ed>[ ]
0 0 0

=

<pay> <-s> <-ed>[ ]
1 0 1 (70)

The semantic vector at the moment (i.e., s𝑡=1) drives the speaker to decide on
what to say next. This makes a contrast to the original production process of DLM,
in which the whole meaning of the target word drives the speaker to produce the
entire form vector. The semantic vector at the moment is then mapped onto a form
vector through the weight matrix at the moment G𝑡=1. The association matrix G
also has its own temporary state at each time step to ensure physiological validity.
Only the sublexical forms that have the coarticulatory characteristics of the word-
initial position can be produced at the word-initial position physiologically (see
Section 2.4.2 for more details). The temporary state of the G matrix, namely G𝑡=1
is defined with help of the V matrix. For the current toy lexicon, the V matrix is
set up as in Equation 71.

V =

#p1 p1z 1z# p1d 1d#



#p1 0 1 0 1 0
p1z 0 0 1 0 0
1z# 0 0 0 0 0
p1d 0 0 0 0 1
1d# 0 0 0 0 0
𝜙 1 0 0 0 0

(71)

At the word-initial position, no sublexical form has not been produced yet. In
other words, nothing (i.e., 𝜙) is the current sublexical form, which determines next
possible sublexical forms. Therefore, the row of 𝜙 in the V matrix is taken out and
converted into a diagonal matrix, as in Equations (72) and (73).
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v𝑡=0 = v𝜙 =

#p1 p1z 1z# p1d 1d#[ ]
𝜙 1 0 0 0 0 (72)

Diag(v𝑡=0) =

#p1 p1z 1z# p1d 1d#


#p1 1 0 0 0 0
p1z 0 0 0 0 0
1z# 0 0 0 0 0
p1d 0 0 0 0 0
1d# 0 0 0 0 0

(73)

The production weight matrix G is filtered for the current time step to be G𝑡=1
by multiplying G by Diag(v𝑡=0) as in Equation 74.

G𝑡=1 = G · Diag(v𝑡=0)

=

#p1 p1z 1z# p1d 1d#[ ]<pay> 0.667 0.000 0.000 0.000 0.000
<-s> 0.333 0.000 0.000 0.000 0.000

<-ed> 0.333 0.000 0.000 0.000 0.000
(74)

With s𝑡=1 and G𝑡=1, a form vector is produced for the moment 𝑡 = 1 by mapping
the temporary semantic vector s𝑡=1 onto ĉpaid,𝑡=1 through G𝑡=1, as in Equation (75).

ĉpaid,𝑡=1 = s𝑡=1 · G𝑡=1 =

#p1 p1z 1z# p1d 1d#[ ]
1 0 0 0 0 (75)

Equation (75) indicates that the segment [p] is selected for this time step. This
segment [p] has carryover-coarticulatory characteristics at the word-onset position
and anticipatory-coarticulatory characteristics with the following diphthong [eI

“
],

namely #p1.
At the next time step 𝑡 = 2, the speaker updates his assumption about the

listener’s understanding. The speaker has produced #p1 (i.e., ĉpaid,𝑡=1), and they
assume that the listener has received the cue correctly (i.e., cpaid,𝑡=1).

ĉpaid,𝑡=1 = cpaid,𝑡=1 =

#p1 p1z 1z# p1d 1d#[ ]
1 0 0 0 0 (76)

Given this set of cues, the listener should have understood the following meaning:
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ŝpaid,𝑡=1 = cpaid,𝑡=1 · F =

<pay> <-s> <-ed>[ ]
0.50 0.25 0.25 (77)

Note that the meanings of <-s> and <-ed> are activated to the same degree. This
is because the sublexical form that has been provided so far (i.e., #p1) does not
provide any evidence about the upcoming suffix. In other words, the meaning of
<pay> has been delivered relatively well. Given this understanding by the listener
(in the speaker’s assumption), the speaker aims at delivering the meaning of <-
ed>. In contrast, the meaning of <-s> is activated to some extent, when it should
not be activated at all. Therefore, the meaning of <-s> should be attenuated. This
reasoning can be expressed mathematically as below:

s𝑡=2 = (spaid − ŝpaid,𝑡=1) =

=

<pay> <-s> <-ed>[ ]
1 0 1 −

<pay> <-s> <-ed>[ ]
0.50 0.25 0.25

=

<pay> <-s> <-ed>[ ]
0.50 −0.25 0.75 (78)

This is the meaning in the speaker’s head, which drives the speaker to decide
what to produce next. At the same time, physiologically plausible sublexical forms
are ensured by G𝑡=2.

v𝑡=1 = v#p1 =

#p1 p1z 1z# p1d 1d#[ ]
#p1 0 1 0 1 0 (79)

G𝑡=2 = G · Diag(v𝑡=1)

=

#p1 p1z 1z# p1d 1d#[ ]<pay> 0.000 0.333 0.000 0.333 0.000
<-s> 0.000 0.667 0.000 −0.333 0.000

<-ed> 0.000 −0.333 0.000 0.667 0.000
(80)

Based on s𝑡=2 and G𝑡=2, sublexical forms are predicted as follows:

ĉpaid,𝑡=2 = s𝑡=2 · G𝑡=2 =

#p1 p1z 1z# p1d 1d#[ ]
0.00 −0.25 0.00 0.75 0.00 (81)
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As indicated in Equation (81), p1d is selected. Conceptually saying, the speaker
decided to produce the diphthong [eI

“
] (i.e., 1), while initiating the articulation of

[d] (i.e., d), which appears as anticipatory coarticulation.
At the next time step (i.e., 𝑡 = 3), the speaker updates his assumption about

the listener’s understanding again. While the sublexical form p1d was activated
only by 0.75, the word form is either perceived (i.e., 1) or not (i.e., 0) by the
listener, once the speaker produces the sublexical form. Therefore, the speaker’s
assumption about the listener’s understanding contains only 1 and 0 as below

cpaid,𝑡=2 =

#p1 p1z 1z# p1d 1d#[ ]
1 0 0 1 0 (82)

The speaker’s assumption about the listener’s understanding for 𝑡 = 3 is updated
as follows:

ŝpaid,𝑡=2 = cpaid,𝑡=2 · F =

<pay> <-s> <-ed>[ ]
0.750 0.125 0.625 (83)

Based on this assumption about the listener’s understanding, the speaker would
feel the necessity to emphasize each semantic dimension as below:

s𝑡=3 = (spaid − ŝpaid,𝑡=2) =

=

<pay> <-s> <-ed>[ ]
1 0 1 −

<pay> <-s> <-ed>[ ]
0.750 0.125 0.625

=

<pay> <-s> <-ed>[ ]
0.250 −0.125 0.375 (84)

Based on this ‘necessity’, the speaker decides the next sublexical form to produce:

ĉpaid,𝑡=3 = s𝑡=3 · G𝑡=3 =

#p1 p1z 1z# p1d 1d#[ ]
0.000 0.000 0.000 0.000 0.375 (85)

The sublexical form 1d# is activated the most strongly, thus being selected by
the speaker to produce at 𝑡 = 3. Assuming the listener has heard what the speaker
has produced correctly, the set of sublexical forms the listener has received is
expressed as below:
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cpaid,𝑡=3 =

#p1 p1z 1z# p1d 1d#[ ]
1 0 0 1 1 (86)

With this set of sublexical forms, the listener should have understood the following
meaning:

ŝpaid,𝑡=3 = cpaid,𝑡=3 · F =

<pay> <-s> <-ed>[ ]
1 0 1 (87)

In other words, the listener should have understood the meaning of paid correctly,
as intended by the speaker, assuming that the listener has received all the sublexical
forms produced by the speaker correctly. This assumption makes the speaker feel
that they do not have to produce anything any more, at least in order to deliver
the meaning of paid to the listener, as expressed as the zero vector between the
goal semantic vector spaid and the meaning the listener has understood so far in the
speaker’s assumption, namely spaid,𝑡=3.

s𝑡=4 = (spaid − ŝpaid,𝑡=3) =

=

<pay> <-s> <-ed>[ ]
1 0 1 −

<pay> <-s> <-ed>[ ]
1 0 1

=

<pay> <-s> <-ed>[ ]
0 0 0 (88)

Because there is no semantics that drives the speaker, no sublexical forms will be
activated any more, as shown in Equation 89 below.

ĉpaid,𝑡=4 = s𝑡=4 · G𝑡=4 =

#p1 p1z 1z# p1d 1d#[ ]
0 0 0 0 0 (89)

In summary, in the current toy lexicon with only two words pays and paid, the
speaker is predicted to produce #p1 first, p1d second, and 1d# last. Conditional
semantic support values predicted at each time step for each sublexical form are
summarized in Table 4 below.
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Table 4. The conditional semantic support values at each time step for the example
lexicon.

Selected #p1 p1z 1z# p1d 1d#

#p1 1.000 0.000 0.000 0.000 0.000
p1d 0.000 -0.250 0.000 0.750 0.000
1d# 0.000 0.000 0.000 0.000 0.375

C. SIMULATED WORD AND MORA DURATION

In the current study, word duration was predicted more accurately by unconditional
semantic support, and mora duration was predicted more accurately by conditional
semantic support. One explanation of these selective effects is that each word
has its own durational target, while moras toward the end of a word tend to
be shorter than the moras preceding them, because of accumulation of contextual
information provided by those preceding moras. Metaphorically, the word-specific
durational target can be understood as the intercept of a regression line. Similarly,
the decreasing trend in mora duration from one mora to the next within a word
can be understood as the slope of a regression line. There are two possibilities
with respect to whether words have their own durational target. There are also two
possibilities with respect to whether mora durations decrease from the beginning
to the end of each word. All the four combinations of these two factors were
listed below and tested by simulating word and mora durations in the subsequent
sections.

• Possibility 1: Word-durational intercept with mora-duration decrease

– Mora duration decreases from the beginning to the end of each word.
Word duration is the sum of the duration of the moras of the word and
word-specific duration.

• Possibility 2: Word-duration intercept without mora-duration decrease

– Each mora in a word has approximately the same duration. Word
duration is the sum of the duration of the moras of the word and word-
specific duration.

• Possibility 3: Mora-duration decrease without word-duration intercept

– Mora duration decreases from the beginning to the end of each word.
Word duration is the sum of these mora durations without any addition
of word-specific duration.

• Possibility 4: No word-duration intercept and no mora-duration decrease
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– Mora duration stays relatively the same from mora to mora within each
word. Word duration is the sum of these mora durations without any
addition of word-specific duration.

C.1. Possibility 1: Word-duration intercept with mora-duration decrease

In this possibility, mora duration is hypothesized to decrease from the beginning to
the end of each word. Word duration is hypothesized to be the sum of the duration
of the moras of the word and word-specific duration.

For this simulation, a total of 100 words were simulated with each word being
randomly assigned with a variable number of moras between 2 and 5. Conditional
semantic support values were subsequently simulated for constituent moras of
each word. The degree, namely the slope, of decrease in simulated conditional
semantic support was randomly chosen from the uniform distribution between
-0.05 and 0. The slope was set to be always negative, because conditional semantic
support should decrease overall from the beginning to the end of a word due to
accumulated context from the preceding moras, unless the word has a suffix or
other sublexical forms that have clear relationships to certain meanings.

In contrast, unconditional semantic support does not necessarily decrease
toward the end of a word, because it does not take intra-word positions into
account. Unconditional and conditional semantic supports, however, predict the
same value for the word-initial sublexical form, because no context is available for
the first sublexical form of the word. Therefore, unconditional semantic support
values were simulated to have a similar value to the conditional semantic support
value for the first mora of the word, and they were simulated to retain similar
unconditional semantic support values throughout the word.

In the current assumption (Possibility 1), mora durations are hypothesized
to decrease throughout a word and the decreasing trend should be captured by
conditional semantic support. Accordingly, mora durations were simulated to
decrease from the beginning to the end of each word. The degree of the decreasing
trend in mora durations was randomly determined to be somewhere between a half
and twice of the decreasing degree of the simulated conditional semantic support.
The slope of the simulated mora durations was defined to be relative to the slope of
the simulated conditional semantic support values to reflect the current assumption
that conditional semantic support captures the decreasing trend in mora durations.
To simulate a word-specific durational target, the simulated mora durations were
shifted upwards by adding the mean of the simulated unconditional semantic
support values. The mean of the simulated semantic support values was added to
reflect the current hypothesis that unconditional semantic support captures word-
specific durational targets. Lastly, the simulated mora durations were added up to
define word duration.

Figure 5 shows the simulated mora durations, word durations, unconditional
semantic support, and conditional semantic support for the first 6 words. Each
panel in Figure 5 represents a word. The x-axis of each panel represents the
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moras of the word. For example, the first word ‘w0001’ has three moras, while
the second word ‘w0002’ has four moras. Bars in each panel represent simulated
mora duration. Mora durations decrease throughout each word for most of the
words. It is, however, also possible that mora durations slightly increase due
to randomness in simulation, as can be seen for the word ‘w0002’. The black
horizontal lines indicate word duration normalized by the number of moras. Red
and green dots and lines indicate simulated conditional and unconditional semantic
support values respectively. Since the current hypothesis is that both of conditional
and unconditional semantic support contribute to word and mora durations, red
dots and lines (i.e., conditional semantic support) decrease in a similar way as
mora durations, and green dots and lines (i.e., unconditional semantic support)
approximate well the (normalized) word duration.

Figure 5. Simulated mora and word durations with word-duration intercepts and
mora-duration decrease.

Based on these simulated variables, four GAMs were fitted with the dependent
variable being either word duration or mora duration and with the predictor being
either unconditional or conditional semantic support. Regarding word duration,
the model with unconditional semantic support outperformed the model with
conditional semantic support (ΔAIC = 21). Regarding mora duration, the model
with conditional semantic support outperformed the model with unconditional
semantic support (ΔAIC = 182). Unconditional and conditional semantic support
were estimated to significantly contribute to word duration and mora duration
respectively. These results of the model comparison are in line with those observed
in the Japanese durational data (see section 4.2). Estimated effects of unconditional
semantic support for word duration and effects of conditional semantic support
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for mora duration are visualized in Figure 6. Word duration and mora duration are
both correlated positively with unconditional semantic support (Figure 6a) and
conditional semantic support (Figure 6b) respectively. These estimated effects are
also similar and in line with the actual observations for the real Japanese duration
data (see Figures 1 and 3), including the leveling-off of the effects of conditional
semantic support for mora duration around smaller conditional semantic support
values.

(a) hoge (b) hoge

Figure 6. hoge

C.2. Possibility 2: Word-duration intercept without mora-duration decrease

For this possibility, word duration and mora duration were simulated in such a way
that each word had its own durational intercept but mora duration does not decrease
throughout a word. The procedure of the simulation is identical to Possibility 1
in the previous section, except for mora duration. For the current simulation,
mora duration was defined to be approximately constant throughout each word
(with normally-distributed random noise), independently from the decreasing
conditional semantic support values (Figure 7).

Consequently, the models with unconditional semantic support outperformed
those with conditional semantic support to predict word duration and mora duration
both (ΔAIC = 21 for word duration and ΔAIC = 226 for mora duration). Effects
of unconditional semantic support were estimated to be positively correlated with
word and mora duration in a linear manner (Figure 8). These observations on
the current simulation data do not align with the actual observations for the
Japanese durational data, in which mora duration was more accurately predicted
by conditional semantic support.
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Figure 7. Simulated mora and word durations with word-duration intercepts and
mora-duration decrease.

(a) hoge (b) hoge

Figure 8. hoge

C.3. Possibility 3: Mora-duration decrease without word-duration intercept

For this possibility, mora duration was simulated to decrease throughout a word
as conditional semantic support also decreased. No word-specific durational
intercepts correlated with unconditional semantic support were included in the
simulation. Figure 9 shows simulated durations and semantic support values for the
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first six words, where mora durations decrease (i.e., bars) as conditional semantic
support (i.e., red dots and lines). Unconditional semantic support values (i.e., blue
dots and lines), however, do not approximate (normalized) word duration (i.e., the
black horizontal lines).

Figure 9. Simulated mora and word durations with word-duration intercepts and
mora-duration decrease.

For this simulation, the models with conditional semantic support outper-
formed those with unconditional semantic support for word duration and mora
duration both (ΔAIC = 7 for word duration and ΔAIC = 306 for mora duration).
Predicted effects of conditional semantic support for word duration appeared in a
non-linear manner, while those for mora duration was linear and positive (Figure
10). Superior performance of conditional semantic support to predict word duration
over unconditional semantic support contradicts the actual observations for the real
Japanese durational data. The estimated effects of conditional semantic support
for simulated word duration (Figure 10a) are also qualitatively different. For the
actual data, semantic support was positively correlated with duration. In addition,
for the actual data, the effects of conditional semantic support was estimated to
be somewhat non-linear with no effect for smaller values of conditional semantic
support. The non-linearity was not captured in the current simulation as well
(Figure 10b).

C.4. Possibility 4: No word-duration intercept and no mora-duration decrease

In this simulation, neither word-specific durational intercept nor decrease in mora
duration within a word was taken into account. As a consequent, mora durations do
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(a) hoge (b) hoge

Figure 10. hoge

not decrease with conditional semantic support. Word duration was not associated
with unconditional semantic support, either (Figure 11).

For this simulated data, the models with conditional semantic support
outperformed those with unconditional semantic support to predict word duration
and mora duration both, although the difference in AIC was quite small for mora
duration (ΔAIC = 6 for word duration and ΔAIC = 1 for mora duration). The
predicted effects of conditional semantic support for the simulated word and mora
duration were qualitatively different from the actual observations for the real
durational data (Figure 12).

C.5. Summary for the selective effects of (un)conditional semantic support

For the actual Japanese durational data, unconditional semantic support predicted
word duration more accurately, while conditional semantic support predicted mora
duration more accurately. These selective effects of unconditional and conditional
semantic support were successfully simulated only by the simulated mora and
word durations that took into account both of the word-specific durational target
and the decrease in mora duration with a word. Logically, the same observations
can be produced by different underlying processes. In this sense, this simulation
cannot be decisive evidence to explain the selective effects of unconditional and
conditional semantic support observed in the current study for the actual durational
data. However, this simulation demonstrated the validity of the explanation for the
current observations about the actual Japanese durational data that unconditional
semantic support captured the word-specific durational aspect while conditional
semantic support captured mora-level durational aspect.
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Figure 11. Simulated mora and word durations with word-duration intercepts and
mora-duration decrease.

(a) hoge (b) hoge

Figure 12. hoge
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